scispace - formally typeset
Search or ask a question
Topic

Complex system

About: Complex system is a research topic. Over the lifetime, 4807 publications have been published within this topic receiving 117331 citations.


Papers
More filters
Journal ArticleDOI
12 May 2011-Nature
TL;DR: In this article, the authors developed analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent control that can guide the system's entire dynamics.
Abstract: The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them. Although control theory offers mathematical tools for steering engineered and natural systems towards a desired state, a framework to control complex self-organized systems is lacking. Here we develop analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent control that can guide the system's entire dynamics. We apply these tools to several real networks, finding that the number of driver nodes is determined mainly by the network's degree distribution. We show that sparse inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control, but that dense and homogeneous networks can be controlled using a few driver nodes. Counterintuitively, we find that in both model and real systems the driver nodes tend to avoid the high-degree nodes.

2,889 citations

Journal ArticleDOI
18 Aug 1972-Nature
TL;DR: It is suggested that large complex systems which are assembled (connected) at random may be expected to be stable up to a certain critical level of connectance, and then, as this increases, to suddenly become unstable.
Abstract: Gardner and Ashby1 have suggested that large complex systems which are assembled (connected) at random may be expected to be stable up to a certain critical level of connectance, and then, as this increases, to suddenly become unstable. Their conclusions were based on the trend of computer studies of systems with 4, 7 and 10 variables.

2,424 citations

Journal ArticleDOI
11 Nov 2005-Science
TL;DR: This paper argues that recent advances in ecological modeling have come together in a general strategy that provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.
Abstract: Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity.

1,933 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the current status of transition-state theory and its generalizations, including recent improvements in available methodology for calculations on complex systems, including the interface with electronic structure theory, progress in the theory and application of transitionstate theory to condensed-phase reactions, and insight into the relation of transition state theory to accurate quantum dynamics.
Abstract: We present an overview of the current status of transition-state theory and its generalizations. We emphasize (i) recent improvements in available methodology for calculations on complex systems, including the interface with electronic structure theory, (ii) progress in the theory and application of transition-state theory to condensed-phase reactions, and (iii) insight into the relation of transition-state theory to accurate quantum dynamics and tests of its accuracy via comparisons with both experimental and other theoretical dynamical approximations.

1,919 citations

Book
28 Jan 1991

1,448 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
81% related
Bounded function
77.2K papers, 1.3M citations
81% related
Differential equation
88K papers, 2M citations
80% related
Markov chain
51.9K papers, 1.3M citations
79% related
Partial differential equation
70.8K papers, 1.6M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023216
2022409
2021197
2020192
2019210
2018230