Topic

# Component (thermodynamics)

About: Component (thermodynamics) is a research topic. Over the lifetime, 3607 publications have been published within this topic receiving 40094 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

31 Aug 2012TL;DR: A statistical generative model called independent component analysis is discussed, which shows how sparse coding can be interpreted as providing a Bayesian prior, and answers some questions which were not properly answered in the sparse coding framework.

Abstract: Independent component models have gained increasing interest in various fields of applications in recent years. The basic independent component model is a semiparametric model assuming that a p-variate observed random vector is a linear transformation of an unobserved vector of p independent latent variables. This linear transformation is given by an unknown mixing matrix, and one of the main objectives of independent component analysis (ICA) is to estimate an unmixing matrix by means of which the latent variables can be recovered. In this article, we discuss the basic independent component model in detail, define the concepts and analysis tools carefully, and consider two families of ICA estimates. The statistical properties (consistency, asymptotic normality, efficiency, robustness) of the estimates can be analyzed and compared via the so called gain matrices. Some extensions of the basic independent component model, such as models with additive noise or models with dependent observations, are briefly discussed. The article ends with a short example.
Keywords:
blind source separation;
fastICA;
independent component model;
independent subspace analysis;
mixing matrix;
overcomplete ICA;
undercomplete ICA;
unmixing matrix

2,976 citations

•

2,739 citations

••

TL;DR: A lattice Boltzmann model is developed which has the ability to simulate flows containing multiple phases and components and is highly efficient to compute on massively parallel computers.

Abstract: A lattice Boltzmann model is developed which has the ability to simulate flows containing multiple phases and components. Each of the components can be immiscible with the others and can have different mass values. The equilibrium state of each component can have a nonideal gas equation of state at a prescribed temperature exhibiting thermodynamic phase transitions. The scheme incorporated in this model is the introduction of an interparticle potential. The dynamical rules in this model are local so it is highly efficient to compute on massively parallel computers. This model has many applications in large-scale numerical simulations of various types of fluid flows.

2,719 citations

•

TL;DR: In this article, a lattice Boltzmann model is developed which has the ability to simulate flows containing multiple phases and components, each of the components can be immiscible with the others and can have different mass values.

Abstract: A lattice Boltzmann model is developed which has the ability to simulate flows containing multiple phases and components. Each of the components can be immiscible with the others and can have different mass values. The equilibrium state of each component can have a nonideal gas equation of state at a prescribed temperature exhibiting thermodynamic phase transitions. The scheme incorporated in this model is the introduction of an interparticle potential. The dynamical rules in this model are local so it is highly efficient to compute on massively parallel computers. This model has many application in large-scale numerical simulations of various types of fluid flows

2,300 citations