scispace - formally typeset
Search or ask a question
Topic

Computational electromagnetics

About: Computational electromagnetics is a research topic. Over the lifetime, 6412 publications have been published within this topic receiving 113727 citations. The topic is also known as: Electromagnetic field analysis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a robust and efficient finite difference algorithm for computing the magnetotelluric response of general three-dimensional (3D) models using the minimum residual relaxation method was developed.
Abstract: We have developed a robust and efficient finite difference algorithm for computing the magnetotelluric response of general three-dimensional (3-D) models using the minimum residual relaxation method. The difference equations that we solve are second order in H and are derived from the integral forms of Maxwell's equations on a staggered grid. The boundary H field values are obtained from two-dimensional transverse magnetic mode calculations for the vertical planes in the 3-D model. An incomplete Cholesky decomposition of the diagonal subblocks of the coefficient matrix is used as a preconditioner, and corrections are made to the H fields every few iterations to ensure there are no H divergences in the solution. For a plane wave source field, this algorithm reduces the errors in the H field for simple 3-D models to around the 0.01% level compared to their fully converged values in a modest number of iterations, taking only a few minutes of computation time on our desktop workstation. The E fields can then be determined from discretized versions of the curl of H equations.

311 citations

Journal ArticleDOI
TL;DR: In this article, a finite-difference solution for 3D transient electromagnetic problems is proposed, which uses a modified version of the Du Fort-Frankel method to solve first-order Maxwell's equations.
Abstract: We have developed a finite-difference solution for three-dimensional (3-D) transient electromagnetic problems. The solution steps Maxwell's equations in time using a staggered-grid technique. The time-stepping uses a modified version of the Du Fort-Frankel method which is explicit and always stable. Both conductivity and magnetic permeability can be functions of space, and the model geometry can be arbitrarily complicated. The solution provides both electric and magnetic field responses throughout the earth. Because it solves the coupled, first-order Maxwell's equations, the solution avoids approximating spatial derivatives of physical properties, and thus overcomes many related numerical difficulties. Moreover, since the divergence-free condition for the magnetic field is incorporated explicitly, the solution provides accurate results for the magnetic field at late times.An inhomogeneous Dirichlet boundary condition is imposed at the surface of the earth, while a homogeneous Dirichlet condition is employed along the subsurface boundaries. Numerical dispersion is alleviated by using an adaptive algorithm that uses a fourth-order difference method at early times and a second-order method at other times. Numerical checks against analytical, integral-equation, and spectral differential-difference solutions show that the solution provides accurate results.Execution time for a typical model is about 3.5 hours on an IBM 3090/600S computer for computing the field to 10 ms. That model contains 100 X 100 X 50 grid points representing about three million unknowns and possesses one vertical plane of symmetry, with the smallest grid spacing at 10 m and the highest resistivity at 100 Omega . m. The execution time indicates that the solution is computer intensive, but it is valuable in providing much-needed insight about TEM responses in complicated 3-D situations.

310 citations

Book ChapterDOI
15 Apr 2005
TL;DR: The finite-difference time-domain (FDTD) solution of the Maxwell's equations is a robust and popular computational technique in science and engineering for modeling electromagnetic wave interactions with complex material structures as mentioned in this paper.
Abstract: The finite-difference time-domain (FDTD ) solution of Maxwell's equations is a robust and popular computational technique in science and engineering for modeling electromagnetic wave interactions with complex material structures. This article reviews key elements of the foundation of FDTD analysis as well as selected recent and emerging FDTD application areas. Keywords: finite-difference time domain; FDTD, Maxwell's equations; numerical methods; computations; electromagnetic waves; computational electrodynamics

294 citations

Book
25 Jan 2011
TL;DR: This book guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions.
Abstract: Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions. It also provides step by step guides to modeling physical sources, lumped-circuit components, absorbing boundary conditions, perfectly matched layer absorbers, and sub-cell structures. Post processing methods such as network parameter extraction and far-field transformations are also detailed. Efficient implementations of the FDTD method in a high level language are also provided. Table of Contents: Introduction / 1D FDTD Modeling of the Transmission Line Equations / Yee Algorithm for Maxwell's Equations / Source Excitations / Absorbing Boundary Conditions / The Perfectly Matched Layer (PML) Absorbing Medium / Subcell Modeling / Post Processing

288 citations

Journal ArticleDOI
TL;DR: In this paper, a complete, three phase transformer model for the calculation of electromagnetic transients is presented, which consists of a set of state equations solved with the trapezoidal rule of integration in order to obtain an equivalent Norton circuit at the transformer terminals.
Abstract: A complete, three phase transformer model for the calculation of electromagnetic transients is presented. The model consists of a set of state equations solved with the trapezoidal rule of integration in order to obtain an equivalent Norton circuit at the transformer terminals. Thus the transformer model can be easily interfaced with an electromagnetic transients program. Its main features are: (a) the basic elements for the winding model are the turns; (b) the complete model includes the losses due to eddy currents in the windings and in the iron core; and (c) the solution of the state equations is obtained in decoupled iterations. For validation, the frequency response of the model is compared with tests on several transformers. Applications to the calculation of transients are given for illustration. >

279 citations


Network Information
Related Topics (5)
Antenna (radio)
208K papers, 1.8M citations
92% related
Microstrip antenna
43.9K papers, 604.4K citations
89% related
Bandwidth (signal processing)
48.5K papers, 600.7K citations
81% related
Metamaterial
30.2K papers, 755.5K citations
81% related
Electromagnetic field
39.1K papers, 611.8K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202325
2022101
2021153
202091
2019109
2018107