scispace - formally typeset
Search or ask a question
Topic

Computational electromagnetics

About: Computational electromagnetics is a research topic. Over the lifetime, 6412 publications have been published within this topic receiving 113727 citations. The topic is also known as: Electromagnetic field analysis.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Schur complement approach is applied to a frequency-domain finite-difference method for fast multimodel 3D electromagnetic simulations by applying a Schur complements approach to a direct solver and with constrained inversion algorithms in view.
Abstract: We have developed an efficient numerical scheme for fast multimodel 3D electromagnetic simulations by applying a Schur complement approach to a frequency-domain finite-difference method. The scheme is based on direct solvers and developed with constrained inversion algorithms in view. Such algorithms normally need many forward modeling jobs with different resistivities for the target zone and/or background formation. We geometricallydivide the computational domain intotwo subdomains: an anomalous subdomain, the resistivities of which were permitted to change, and a background subdomain, having fixed resistivities.The system matrix ispartiallyfactorizedby precomputing a Schur complement to eliminate unknowns associated with the background subdomain. The Schur complement system is then solved to compute fields inside the anomalous subdomain. Finally, the background subdomain fields are computed using inexpensive local substitutions. For each successive simulation, only the relatively small Schur complement system has to be solved, which results in significant computational savings. We applied this approach to two moderately sized 3D problems in marine controlled-source electromagnetic modeling: (1) a deepwater model in which the resistivities of the seawater and the air layer were kept fixed and (2) a model in which focused inversion was performed in a scenario in which the resistivities of the background formation, the air layer, and the seawater were known. We found a significant reduction of the modeling time in inversion that depended on the relative sizes of the constrained and unconstrained volumes: the smaller the unconstrained volume, the larger the savings. Specifically, for a focused inversion of the Troll oil field in the North Sea, the gain amounted up to 80% of the total modeling time.

33 citations

Journal ArticleDOI
TL;DR: In this paper, the capacitance per unit length of a microstrip transmission line is obtained using a spectral-domain method-of-moments (MoM) formulation, and the authors emphasize this problem as a teaching tool to introduce students of electromagnetics to this technique.
Abstract: The capacitance per unit length of a microstrip transmission line is obtained using a spectral-domain method-of-moments (MoM) formulation. The paper emphasizes this problem as a teaching tool to introduce students of electromagnetics to this technique. Firstly, the derivation of the spectral-domain Green's function is outlined. Using this, the relevant integral equation is derived to which the Galerkin MoM approach is then applied. The MoM problem is solved in the spectral domain by also transforming the expansion and weighting functions. The inverse Fourier transform is then applied to find the spatial-domain charge distribution, and, hence, capacitance. The issues that arise here - both of selecting how much of the spectrum to include, and how to choose the number of integration points - are discussed, and the results of typical numerical experiments are presented. The time required to compute the elements of the immittance matrix is shown to be 0(N/sup 3/); the use of translational symmetry (and thus Toeplitz matrix structure) to reduce this is outlined. Classroom experience with this material is discussed. Finally, a hybrid spectral/spatial-domain formulation, introducing asymptotics, is outlined to accelerate the evaluation of the immittance matrix.

33 citations

Proceedings ArticleDOI
08 Dec 2003
TL;DR: An approach to generating low-order models of spiral inductors that accurately capture the dependence on both frequency and geometry parameters and reducing an integral equation for the three dimensional electromagnetic behavior of the spiral inductor is described.
Abstract: We describe an approach to generating low-order models of spiral inductors that accurately capture the dependence on both frequency and geometry (width and spacing) parameters. The approach is based on adapting a multiparameter Krylov-subspace based moment matching method to reducing an integral equation for the three dimensional electromagnetic behavior of the spiral inductor. The approach is demonstrated on a typical on-chip rectangular inductor.

33 citations

Journal ArticleDOI
TL;DR: The high-accuracy finite-difference schemes used to solve the two-dimensional time-domain Maxwell equations for electromagnetic wave propagation and scattering are shown to be substantially more efficient, in both computing time and memory, than a second-order and a fourth-order method.
Abstract: High-accuracy finite-difference schemes are used to solve the two-dimensional time-domain Maxwell equations for electromagnetic wave propagation and scattering. The high-accuracy schemes consist of a seven-point spatial operator coupled with a six-stage Runge--Kutta time-marching method. Two methods are studied, one of which produces the maximum order of accuracy and one of which is optimized for propagation distances smaller than roughly 300 wavelengths. Boundary conditions are presented which preserve the accuracy of these schemes when modeling interfaces between different materials. Numerical experiments are performed which demonstrate the utility of the high-accuracy schemes in modeling waves incident on dielectric and perfect-conducting scatterers using Cartesian and curvilinear grids. The high-accuracy schemes are shown to be substantially more efficient, in both computing time and memory, than a second-order and a fourth-order method. The optimized scheme can lead to a reduction in error relative to the maximum-order scheme, with no additional expense, especially when the number of wavelengths of travel is large.

33 citations


Network Information
Related Topics (5)
Antenna (radio)
208K papers, 1.8M citations
92% related
Microstrip antenna
43.9K papers, 604.4K citations
89% related
Bandwidth (signal processing)
48.5K papers, 600.7K citations
81% related
Metamaterial
30.2K papers, 755.5K citations
81% related
Electromagnetic field
39.1K papers, 611.8K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202325
2022101
2021153
202091
2019109
2018107