scispace - formally typeset
Search or ask a question
Topic

Computational electromagnetics

About: Computational electromagnetics is a research topic. Over the lifetime, 6412 publications have been published within this topic receiving 113727 citations. The topic is also known as: Electromagnetic field analysis.


Papers
More filters
Book
01 Jan 1969

209 citations

Proceedings ArticleDOI
02 Jun 1980
TL;DR: In this paper, the time-domain transmission-line equations for uniform multiconductor transmission lines in a conductive, homogeneous medium excited by a transient, nonuniform electromagnetic (EM) field are derived from Maxwell's equations.
Abstract: The time-domain transmission-line equations for uniform multiconductor transmission lines in a conductive, homogeneous medium excited by a transient, nonuniform electromagnetic (EM) field, are derived from Maxwell's equations. Depending on how the line voltage is defined, two formulations are possible. One of these formulations is considerably more convenient to apply than the other. The assumptions made in the derivation of the transmission-line equations and the boundary conditions at the terminations are discussed. For numerical calculations, the transmission -line equations are represented by finite-difference techniques, and numerical examples are included.

209 citations

Book
01 Jan 2011
TL;DR: In this paper, the authors propose a method to solve the problem of homonymity in homonym identification, which is called homonym-based homonymization, or homonymisation.
Abstract: ............................................................................................................................................................................................... 2

207 citations

Journal ArticleDOI
TL;DR: In this article, it is shown that differential forms and their discrete counterparts (cochains) provide a natural bridge between the continuum and the lattice versions of the theory, allowing for a natural factorization of the field equations into topological field equations (i.e., invariant under homeomorphisms) and metric field equations.
Abstract: The language of differential forms and topological concepts are applied to study classical electromagnetic theory on a lattice. It is shown that differential forms and their discrete counterparts (cochains) provide a natural bridge between the continuum and the lattice versions of the theory, allowing for a natural factorization of the field equations into topological field equations (i.e., invariant under homeomorphisms) and metric field equations. The various potential sources of inconsistency in the discretization process are identified, distinguished, and discussed. A rationale for a consistent extension of the lattice theory to more general situations, such as to irregular lattices, is considered.

203 citations


Network Information
Related Topics (5)
Antenna (radio)
208K papers, 1.8M citations
92% related
Microstrip antenna
43.9K papers, 604.4K citations
89% related
Bandwidth (signal processing)
48.5K papers, 600.7K citations
81% related
Metamaterial
30.2K papers, 755.5K citations
81% related
Electromagnetic field
39.1K papers, 611.8K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202325
2022101
2021153
202091
2019109
2018107