scispace - formally typeset
Search or ask a question
Topic

Concentration effect

About: Concentration effect is a research topic. Over the lifetime, 3045 publications have been published within this topic receiving 108994 citations.


Papers
More filters
Journal ArticleDOI
01 Jan 2001-Polymer
TL;DR: In this paper, the effects of two of the most important processing parameters, spinning voltage and solution concentration, on the morphology of the fibers formed were evaluated systematically, and it was found that spinning voltage is strongly correlated with the formation of bead defects in the fibers, and that current measurements may be used to signal the onset of the processing voltage at which the bead defect density increases substantially.

2,684 citations

Journal ArticleDOI
01 Mar 2004-Polymer
TL;DR: In this paper, the influence of different process parameters on the electric current and volume and surface charge density in the polymer jet was measured and the electric conductivity and permittivity were measured as well.

954 citations

Journal ArticleDOI
TL;DR: In this article, the scaling picture of de Gennes et al. was extended to both unentangled and entangled regimes of intrinsically flexible polyelectrolyte solutions, and the dynamics of the chain is Rouse-like with viscosity weakly increasing with concentration η∼c 1/2 (Fuoss law), relaxation time decreasing with concentration τ Rouse ∼c -1/2, and diffusion coefficient independent of concentration.
Abstract: We extend and generalize the scaling picture of de Gennes et al. and Pfeuty to both unentangled and entangled regimes of intrinsically flexible polyelectrolyte solutions. In semidilute solution the electrostatic persistence length of a polyelectrolyte is assumed to be proportional to the Debye screening length. If the salt concentration is low, the unentangled semidilute concentration regime spans three to four decades in polymer concentration. In this regime the dynamics of the chain is Rouse-like with viscosity weakly increasing with concentration η∼c 1/2 (Fuoss law), relaxation time decreasing with concentration τ Rouse ∼c -1/2 , and diffusion coefficient independent of concentration. Polyelectrolytes should form entanglements at the same relative viscosity as neutral polymer solutions (η≅50η s ). In the entangled regime of salt-free polyelectrolytes we predict the viscosity η∼c 3/2 , relaxation time to be independent of concentration, and diffusion coefficient D self ∼c -1/2 . Our predictions are found to compare favorably with experiments

817 citations

Journal ArticleDOI
TL;DR: In this article, the percolation threshold of nanotubes in poly(propylene) and poly(polystyrene) matrices was investigated and a small increase in elastic modulus and decrease in tensile strength at low nanotube loading was observed, but as the concentration was increased there was a progressive increase in both strength and stiffness.
Abstract: The dispersion of nanotubes in polymer matrices has been investigated as a means of deriving new and advanced engineering materials. These composite materials have been formed into fibers and thin films and their mechanical and electrical properties determined. The nanotube concentration at which conductivity was initiated (the percolation threshold) varied with host polymer. In poly(propylene), this was as low as 0.05 vol.-%, while higher concentrations were required for polystyrene and particularly for ABS. There was a small increase in elastic modulus and decrease in tensile strength at low nanotube loading, but as the concentration was increased there was a progressive increase in both strength and stiffness.

687 citations

Journal ArticleDOI
TL;DR: The phase behavior of the triblock copolymers dissolved in water has been studied using SANS as discussed by the authors, and the structural properties have been studied as a function of polymer concentration and temperature.
Abstract: The phase behavior of the triblock copolymers dissolved in water has been studied using SANS. The structural properties have been studied as a function of polymer concentration and temperature. At low temperature (T ≤ 15°C) and low polymer concentrations the unimers are fully dissolved Gaussian chains with radius R g =17 A. Close to ambient temperature, the hydrophobic nature of PPO causes aggregation of the polymers into spherical micelles with core sizes of the order of 40-50 A, somewhat temperature dependent. The concentration of micelles increased roughly linearly with temperature, until either a saturation is reached,where all the polymers are part of a micelle, or the volume density of micelles is so high that they lock into a crystalline structure of hard spheres

669 citations


Network Information
Related Topics (5)
Polymer
131.4K papers, 2.6M citations
93% related
Polymerization
147.9K papers, 2.7M citations
91% related
Nanocomposite
71.3K papers, 1.9M citations
89% related
Aqueous solution
189.5K papers, 3.4M citations
89% related
Phase (matter)
115.6K papers, 2.1M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20222
202118
202018
201923
201815
201725