scispace - formally typeset
Search or ask a question

Showing papers on "Condition monitoring published in 1977"


Book
01 Jan 1977
TL;DR: In this article, the authors present a model for failure detection in a marine engine and show that it is possible to detect the failure of a flywheel bearing in a steam turbine by measuring the transverse vibrations of the bearing.
Abstract: 1 Failure types, investigation and occurrences.- 1.1 Introduction.- 1.2 System failure and component failure.- 1.3 Failure decisions.- 1.4 Failure classifications.- 1.5 Types of failure.- 1.6 Failure investigations.- 1.7 Failure case studies.- 1.8 Human factors in failure incidents.- 2 Causes of failure.- 2.1 Introduction.- 2.2 Service failures.- 2.3 Fatigue.- 2.4 Excessive deformation.- 2.5 Wear.- 2.6 Corrosion.- 2.7 Blockage, sludges.- 2.8 Blockage in cooling systems.- 2.9 Design, manufacturing and assembly causes of failure.- 3 Fault detection sensors.- 3.1 Introduction.- 3.2 Contaminant monitoring.- 3.3 Corrosion monitoring.- 3.4 Force monitoring.- 3.5 Gas leakage monitoring.- 3.6 Air pollution monitoring.- 3.7 Liquid contamination monitoring.- 3.8 Non-destructive testing techniques.- 3.9 Optical examination.- 3.10 Temperature sensing.- 3.11 Particle testing.- 3.12 Proximity monitors.- 3.13 Sound monitoring.- 3.14 Vibration transducers.- 3.15 Telemetry.- 4 Data processing and analysis.- 4.1 Introduction.- 4.2 Fourier analysis.- 4.3 Frequency analysis techniques.- 4.4 Derived functions.- 5 Vibration analysis.- 5.1 Introduction.- 5.2 Vibration-simple harmonic motion concept.- 5.3 Vibration signature of active systems.- 5.4 Vibration monitoring equipment.- 5.5 System monitors and vibration limit detectors.- 5.6 Vibration monitoring experience.- 5.7 Critical vibration levels.- 6 Sound monitoring.- 6.1 Introduction.- 6.2 Sound frequencies.- 6.3 Sound loudness measurement.- 6.4 Acoustic power.- 6.5 Sound measurement.- 6.6 Magnetic tape recorders.- 6.7 Sound level meters.- 6.8 Sound analysers.- 6.9 Sound signal data processing.- 6.10 Sound monitoring.- 7 Discrete frequencies.- 7.1 Introduction.- 7.2 Simple vibrations.- 7.3 Transverse vibrations of bars - approximate frequency calculations.- 7.4 More precise evaluations - overtones.- 7.5 Torsional oscillation of flywheel-bearing shafts.- 7.6 Belt drives.- 7.7 Whirling of marine line shafting.- 7.8 Gear excitation.- 7.9 Rolling element bearing.- 7.10 Blade vibration.- 7.11 Cam mechanism vibration.- 8 Contaminant analysis.- 8.1 Introduction.- 8.2 Contaminants in used lubricating oils.- 8.3 Carrier fluid degradation.- 8.4 Contaminant monitoring techniques (wear processes).- 8.5 Oil degradation analysis.- 8.6 Abrasive particles in lubricating oil.- 8.7 Abrasive particles in bearings.- 8.8 Abrasive particles in hydraulic systems.- 8.9 Dissolved gas fault monitoring.- 9 SOAP and other contaminant monitoring techniques.- 9.1 Introduction.- 9.2 Spectrometric oil analysis procedure.- 9.3 Magnetic chip detectors.- 9.4 'Ferrograph' particle precipitation.- 9.5 STM control kit.- 9.6 Used oil blotter test.- 9.7 Thin-layer chromatography.- 9.8 Capacitative oil debris monitor.- 9.9 X-ray fluorescence detection of contamination (XRF).- 9.10 X-ray photoelectron spectrometry.- 9.11 Particle classification.- 10 Performance trend monitoring.- 10.1 Primary monitoring - performance.- 10.2 Primary and secondary performance parameters.- 10.3 Performance trend analysis.- 10.4 Turbine gas path performance monitoring thermodynamics.- 10.5 Steam turbine performance analysis.- 10.6 Case studies in performance monitoring.- 10.7 Performance monitoring systems.- 11 Static testing.- 11.1 Introduction.- 11.2 Visual testing.- 11.3 Liquid penetrant inspection.- 11.4 Thermal methods.- 11.5 X-ray photography.- 11.6 Sonics.- 11.7 Ultrasonics.- 11.8 Stress wave emission.- 11.9 Magnetic testing methods.- 11.10 Electrical NDT techniques.- 11.11 Eddy current testing.- 11.12 NDT selection.- 12 Monitoring systems in operation.- 12.1 Introduction.- 12.2 Marine monitoring systems.- 12.3 Marine condition monitoring requirements.- 12.4 Marine diesel engine monitoring.- 12.5 Marine turbine monitoring systems.- 12.6 Shipboard vibration monitoring.- 12.7 Spectrometric oil analysis programme - marine.- 12.8 Monitoring integrity verification.- 12.9 Aircraft condition monitoring.- 12.10 Condition monitoring - generating plant.- 12.11 Automotive diagnostic equipment.- 12.12 Systematic fault monitor selection.- 13 Fault analysis planning and system availability.- 13.1 Introduction.- 13.2 Availability.- 13.3 Failure prediction/reliability assessment.- 13.4 Hazard rate curve.- 13.5 Complex system reliability - Monte Carlo simulation.- 13.6 Hazardous chemical plants - high integrity protective systems (HIPS).- 14 Reliability/failure concepts.- 14.1 Introduction.- 14.2 Probability of reliability and failure.- 14.3 Failure pattern-exponential distribution.- 14.4 Load and strength - statistical distribution.- 14.5 Reliability assurance -1 Failure types, investigation and occurrences.- 1.1 Introduction.- 1.2 System failure and component failure.- 1.3 Failure decisions.- 1.4 Failure classifications.- 1.5 Types of failure.- 1.6 Failure investigations.- 1.7 Failure case studies.- 1.8 Human factors in failure incidents.- 2 Causes of failure.- 2.1 Introduction.- 2.2 Service failures.- 2.3 Fatigue.- 2.4 Excessive deformation.- 2.5 Wear.- 2.6 Corrosion.- 2.7 Blockage, sludges.- 2.8 Blockage in cooling systems.- 2.9 Design, manufacturing and assembly causes of failure.- 3 Fault detection sensors.- 3.1 Introduction.- 3.2 Contaminant monitoring.- 3.3 Corrosion monitoring.- 3.4 Force monitoring.- 3.5 Gas leakage monitoring.- 3.6 Air pollution monitoring.- 3.7 Liquid contamination monitoring.- 3.8 Non-destructive testing techniques.- 3.9 Optical examination.- 3.10 Temperature sensing.- 3.11 Particle testing.- 3.12 Proximity monitors.- 3.13 Sound monitoring.- 3.14 Vibration transducers.- 3.15 Telemetry.- 4 Data processing and analysis.- 4.1 Introduction.- 4.2 Fourier analysis.- 4.3 Frequency analysis techniques.- 4.4 Derived functions.- 5 Vibration analysis.- 5.1 Introduction.- 5.2 Vibration-simple harmonic motion concept.- 5.3 Vibration signature of active systems.- 5.4 Vibration monitoring equipment.- 5.5 System monitors and vibration limit detectors.- 5.6 Vibration monitoring experience.- 5.7 Critical vibration levels.- 6 Sound monitoring.- 6.1 Introduction.- 6.2 Sound frequencies.- 6.3 Sound loudness measurement.- 6.4 Acoustic power.- 6.5 Sound measurement.- 6.6 Magnetic tape recorders.- 6.7 Sound level meters.- 6.8 Sound analysers.- 6.9 Sound signal data processing.- 6.10 Sound monitoring.- 7 Discrete frequencies.- 7.1 Introduction.- 7.2 Simple vibrations.- 7.3 Transverse vibrations of bars - approximate frequency calculations.- 7.4 More precise evaluations - overtones.- 7.5 Torsional oscillation of flywheel-bearing shafts.- 7.6 Belt drives.- 7.7 Whirling of marine line shafting.- 7.8 Gear excitation.- 7.9 Rolling element bearing.- 7.10 Blade vibration.- 7.11 Cam mechanism vibration.- 8 Contaminant analysis.- 8.1 Introduction.- 8.2 Contaminants in used lubricating oils.- 8.3 Carrier fluid degradation.- 8.4 Contaminant monitoring techniques (wear processes).- 8.5 Oil degradation analysis.- 8.6 Abrasive particles in lubricating oil.- 8.7 Abrasive particles in bearings.- 8.8 Abrasive particles in hydraulic systems.- 8.9 Dissolved gas fault monitoring.- 9 SOAP and other contaminant monitoring techniques.- 9.1 Introduction.- 9.2 Spectrometric oil analysis procedure.- 9.3 Magnetic chip detectors.- 9.4 'Ferrograph' particle precipitation.- 9.5 STM control kit.- 9.6 Used oil blotter test.- 9.7 Thin-layer chromatography.- 9.8 Capacitative oil debris monitor.- 9.9 X-ray fluorescence detection of contamination (XRF).- 9.10 X-ray photoelectron spectrometry.- 9.11 Particle classification.- 10 Performance trend monitoring.- 10.1 Primary monitoring - performance.- 10.2 Primary and secondary performance parameters.- 10.3 Performance trend analysis.- 10.4 Turbine gas path performance monitoring thermodynamics.- 10.5 Steam turbine performance analysis.- 10.6 Case studies in performance monitoring.- 10.7 Performance monitoring systems.- 11 Static testing.- 11.1 Introduction.- 11.2 Visual testing.- 11.3 Liquid penetrant inspection.- 11.4 Thermal methods.- 11.5 X-ray photography.- 11.6 Sonics.- 11.7 Ultrasonics.- 11.8 Stress wave emission.- 11.9 Magnetic testing methods.- 11.10 Electrical NDT techniques.- 11.11 Eddy current testing.- 11.12 NDT selection.- 12 Monitoring systems in operation.- 12.1 Introduction.- 12.2 Marine monitoring systems.- 12.3 Marine condition monitoring requirements.- 12.4 Marine diesel engine monitoring.- 12.5 Marine turbine monitoring systems.- 12.6 Shipboard vibration monitoring.- 12.7 Spectrometric oil analysis programme - marine.- 12.8 Monitoring integrity verification.- 12.9 Aircraft condition monitoring.- 12.10 Condition monitoring - generating plant.- 12.11 Automotive diagnostic equipment.- 12.12 Systematic fault monitor selection.- 13 Fault analysis planning and system availability.- 13.1 Introduction.- 13.2 Availability.- 13.3 Failure prediction/reliability assessment.- 13.4 Hazard rate curve.- 13.5 Complex system reliability - Monte Carlo simulation.- 13.6 Hazardous chemical plants - high integrity protective systems (HIPS).- 14 Reliability/failure concepts.- 14.1 Introduction.- 14.2 Probability of reliability and failure.- 14.3 Failure pattern-exponential distribution.- 14.4 Load and strength - statistical distribution.- 14.5 Reliability assurance - BS 9000 system.- 15 Reliability data sources.- 15.1 Introduction.- 15.2 Systems Reliability Service (SRS).- 15.3 Failure data.- 15.4 Environmental influences on instrument failure rates.- 15.5 Failure data-confidence level.

165 citations


Journal ArticleDOI
01 Aug 1977-Wear
TL;DR: Ferrography is a technique by which wear debris and contaminant particles are separated from a lubricant and analyzed as mentioned in this paper, which is used for machinery condition monitoring to prevent failure and to allow a safe change from expensive periodic dismantling of machinery for maintenance to the more economical predictive maintenance.

42 citations


Journal ArticleDOI
TL;DR: This new method is based on the prediction in parallel of the output residual and of discriminant functions, thus yielding a predictive state classification into overall degradation classes, and has been implemented in the engine maintenance department of an airline.

12 citations


01 Jan 1977
TL;DR: In this paper, the advantages of properly installed condition monitoring system working according to intentions are summarized, and the use of condition monitoring in large bore diesels is discussed, with particular attention paid to the use in large bearing diesels.
Abstract: The advantages of a properly installed condition monitoring system working according to intentions are summarized. Particular attention is paid to the use of condition monitoring in large bore diesels. Maintenance requirements, damage frequency and cost savings are discussed.

3 citations


01 Jan 1977
TL;DR: In this paper, the authors discuss existing criteria used for quantifying the measured vibration levels and the actual internal condition and suggest that a better criterion can be established if the dynamic properties of the machinery structure are available, that is, if the transmission path between the excitation and transducer is known.
Abstract: The article discusses existing criteria used for quantifying the measured vibration levels and the actual internal condition. It is suggested that in many cases a better criterion can be established if the dynamic properties of the machinery structure are available, that is, if the transmission path between the excitation and transducer is known. The influence of certain operating characteristics on measured vibration signals is discussed. Comparison between actual condition and measured results is given.

2 citations


Patent
09 Apr 1977
TL;DR: In this paper, a memory circuit capable of setting/resetting according to the instructions from the centralized controlling device in a electronic system, etc., and monitoring the overloading condition of the system is presented.
Abstract: PURPOSE:To prevent a functional paralysis by providing a memory circuit capable of setting/resetting according to the instructions from the centralized controlling device in a electronic system, etc., and monitoring the overloading condition of the system.

2 citations


01 Jan 1977
TL;DR: In this article, a survey of typical failures of cylinder units of large diesel engines and their most probable causes is presented as experienced by a shipping company, and a series of possible monitoring parameters are reviewed.
Abstract: The term Condition Monitoring is in this context used to describe instrumental aids for evaluating functioning and physical condition of vital components during normal running of an engine. The objectives of such systems are reviewed, and some considerations on economical and operational sequences of main engine failures are presented as experienced by a shipping company. Based on a survey of typical failures of cylinder units of large diesel engines and their most probable causes, a series of possible monitoring parameters are reviewed.

1 citations



01 Aug 1977
TL;DR: In this article, the condition monitoring system for steam propulsion plants, Predikt 10 Steam, is described and compared to similar systems, concerning such factors as methods, advantages and disadvantages.
Abstract: The paper describes the condition monitoring system for steam propulsion plants, "Predikt 10 Steam". The system is newly developed and is based on manual measurement readings and computerized calculations of the steam plant efficiencies, heat balance and trend analysis. This system, specially made for use on board, is compared to similar systems, concerning such factors as methods, advantages and disadvantages. Potential savings, acquired from earlier experience with condition monitoring for steam plants, are presented. The prototype version T/T "ADNA", is described in more detail, and the complete set of measurement data, component efficiencies and heat balance data are presented. Experience with installing and operating the version T/T "ADNA" so far, is promising. More experience will be gained during 1977 by installing 12 new systems actually ordered by January 1977.

1 citations


Journal Article
01 Mar 1977-Power
TL;DR: In this paper, the types of protection systems needed to guard against unexpected failures in high power machinery are discussed, and the selection of the proper surveillance and protection system is described in detail, as in the monitoring of vibration.
Abstract: This article is the first of a four-part series which discusses the types of protection systems needed to guard against unexpected failures in high power machinery. This section describes how dynamic vibration and other operating variables can be used to monitor the condition of rotating machinery continuously and on-line. The selection of the proper surveillance and protection system is described in detail, as in the monitoring of vibration. A comparison of surveillance methods for shaft displacement and casing vibration is made. Some typical applications are described as are rotor-position measurements and the display and evaluation of data using a computer.

1 citations