scispace - formally typeset
Search or ask a question
Topic

Conductance

About: Conductance is a research topic. Over the lifetime, 8088 publications have been published within this topic receiving 235961 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: It was found that the mobility of ions in solutions depends only on the percentage of concentration of added non-electrolytes and practically not on their chemical nature (sugars or polyglycols) and molecular size.
Abstract: A new method of pore size determination is presented. The results of applying this simple method to ion channels formed by staphylococcal α-toxin and its N-terminal fragment as well as to cholera toxin channels are shown. The advantages and the difficulties of this method are discussed. It was found that (i) the mobility of ions in solutions depends only on the percentage of concentration of added non-electrolytes and practically not on their chemical nature (sugars or polyglycols) and molecular size; (ii) the proportional change of both ion channel conductance and bulk solution conductivity by low M. non-electrolytes may be used as an indication of a diffusion mechanism of ion transport through channels; (iii) the slope of the dependence of the ion channel conductance on the bulk conductivity of solutions containing different concentrations of non-electrolyte is a good measure of channel permeability for non-electrolytes.

209 citations

01 Nov 2010
TL;DR: In this paper, a top-gate with a high-k dielectric insulator was used to modulate the surface states of Bi2Se3 and showed that the density of surface states can be modulated via the electric field effect.
Abstract: Electronic transport experiments involving the topologically protected states found at the surface of Bi2Se3 and other topological insulators require fine control over carrier density, which is challenging with existing bulk-doped material. Here we report on electronic transport measurements on thin (<100 nm) Bi2Se3 devices and show that the density of the surface states can be modulated via the electric field effect by using a top-gate with a high-k dielectric insulator. The conductance dependence on geometry, gate voltage, and temperature all indicate that transport is governed by parallel surface and bulk contributions. Moreover, the conductance dependence on top-gate voltage is ambipolar, consistent with tuning between electrons and hole carriers at the surface.

206 citations

Journal ArticleDOI
TL;DR: A quantitative theory of electroporation of artificial planar lipid bilayer membranes is presented and predicts that the fate in any particular experiment is determined by the properties of the membrane and the duration and amplitude of the charging pulse.

205 citations

Journal ArticleDOI
TL;DR: It is concluded that oligoynes and polyynes are a very promising class of molecular wires for integration into electronic circuitry.
Abstract: We report the electrical conductance at the single molecule level of the oligoyne molecular wires Py-(C C)(n)-Py (n = 1, 2 and 4; Py = 4-pyridyl) using STM-molecular break junction techniques in Au vertical bar molecule vertical bar Au configurations. The conductance histograms reveal multiple series of peaks attributed to differing contact geometries between the pyridyl head groups and the gold electrodes. Both experimental and theoretical evidence point to the higher conduction groups being related to adsorption of the pyridyl group at more highly coordinated sites such as step edges or alongside gold adatoms. All three conduction groups in the oligoyne series show a remarkably low beta value of (0.06 +/- 0.03) angstrom(-1), that is, the conductance is almost independent of molecular length. 4,4'-Bipyridyl studied under the same conditions does not follow this exponential decay series. Theoretical calculations using a combination of density functional theory and nonequilibrium Green's function formalism support the experimental results. We conclude that oligoynes and polyynes are a very promising class of molecular wires for integration into electronic circuitry.

205 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
79% related
Graphene
144.5K papers, 4.9M citations
78% related
Oxide
213.4K papers, 3.6M citations
78% related
Thin film
275.5K papers, 4.5M citations
77% related
Raman spectroscopy
122.6K papers, 2.8M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023457
2022828
2021154
2020158
2019172
2018168