scispace - formally typeset
Search or ask a question
Topic

Conductance

About: Conductance is a research topic. Over the lifetime, 8088 publications have been published within this topic receiving 235961 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Through large-scale molecular dynamics simulations, the permeability of the alpha-hemolysin/lipid bilayer complex for water and ions is studied and the side channels were found to connect seven His-144 residues surrounding the stem of the protein to the bulk solution; the protonation of these residues was observed to affect the ion conductance.

655 citations

Journal ArticleDOI
TL;DR: A theoretical framework and global maps for relations between nitrogen-(N)-nutrition and stomatal conductance, gs' at the leaf scale and flUXe!1 of water vapor and carbon dioxide at the canopy scale are provided.
Abstract: This review provides a theoretical framework and global maps for relations between nitrogen-(N)-nutrition and stomatal conductance, gs' at the leaf scale and flUXe!1 of water vapor and carbon dioxide at the canopy scale. This theory defines the boundaries for observed rates of maximum surface conductance, Gsmax, and its relation to leaf area index, A, within a range of observed max­ imum stomatal conductances. gsmax. Soil evaporation compensates for the reduced contribution of plants to total ecosystem water loss at A < 4. Thus, Gsmax is fairly independent of changes in A for a broad range of vegetation types. The variation of Gsmax within these boundaries can be explained by effects of plant nutrition on stomatal conductance via effects on assimilation. Relations are established for the main global vegetation types among (i) maximum stomatal conductance and leaf nitrogen concentrations with a slope of 0.3 mm s-I per mg N g-I, (ii) maximum surface conductance and stomatal conductance with a slope of 3 mm s-I in G per mm S-I in g, and (iii) maximum surface CO2 uptake and surface conductance with a slope of 1 /lmol m-2 s-1 in A per mm S-1 in G. Based on the distribution of leaf nitrogen in different vegetation types, predictions are made for maximum surface conductance and assimilation of carbon dioxide at a global scale. The review provides a basis for modeling and predicting feedforward and feedback effects between terres­ trial vegetation and global climate.

634 citations

Journal ArticleDOI
TL;DR: It is shown that 4,4'-bipyridine-gold single-molecule junctions can be reversibly switched between two conductance states through repeated junction elongation and compression, and could form the basis of a new class of mechanically activated single- molecule switches.
Abstract: Molecular-scale components are expected to be central to the realization of nanoscale electronic devices1,2,3. Although molecular-scale switching has been reported in atomic quantum point contacts4,5,6, single-molecule junctions provide the additional flexibility of tuning the on/off conductance states through molecular design. To date, switching in single-molecule junctions has been attributed to changes in the conformation or charge state of the molecule7,8,9,10,11,12. Here, we demonstrate reversible binary switching in a single-molecule junction by mechanical control of the metal–molecule contact geometry. We show that 4,4'-bipyridine–gold single-molecule junctions can be reversibly switched between two conductance states through repeated junction elongation and compression. Using first-principles calculations, we attribute the different measured conductance states to distinct contact geometries at the flexible but stable nitrogen–gold bond: conductance is low when the N–Au bond is perpendicular to the conducting π-system, and high otherwise. This switching mechanism, inherent to the pyridine–gold link, could form the basis of a new class of mechanically activated single-molecule switches. Molecular-scale switches will be central components in nanoscale electronic devices. Switching in single-molecule junctions has so far been achieved through changes in the conformation or charge state of the molecule. Now, reversible binary switching has been demonstrated by mechanical control of the metal–molecule contact geometry—a mechanism which could form the basis for a new class of mechanically activated single-molecule switches.

594 citations

Journal ArticleDOI
TL;DR: In this paper, a reanalysis of 52 sets of measurements on 16 species supports the conclusion of Mott & Parkhurst that stomata respond to the rate of transpiration (E) rather than to humidity per se.
Abstract: The stomatal conductance (g) for single leaves and the equivalent canopy conductance for stands of vegetation are often represented in models as empirical functions of saturation vapour pressure deficit or relative humidity. The mechanistic basis of this dependence is very weak. A reanalysis of 52 sets of measurements on 16 species supports the conclusion of Mott & Parkhurst (1991, Plant, Cell and Environment 14, 509–515) that stomata respond to the rate of transpiration (E) rather than to humidity per se. In general, ∂g/∂E is negative and constant so that the relation between g and E can be defined by two parameters: a maximum conductance gm obtained by extrapolation to zero transpiration, and a maximum rate of transpiration Em obtained by extrapolation to zero conductance. Both parameters are shown to be functions of temperature, CO2 concentration, and soil water content. Exceptionally, transpiration rate and conductance may decrease together in very dry air, possibly because of patchy closure of stomata.

587 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
79% related
Graphene
144.5K papers, 4.9M citations
78% related
Oxide
213.4K papers, 3.6M citations
78% related
Thin film
275.5K papers, 4.5M citations
77% related
Raman spectroscopy
122.6K papers, 2.8M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023457
2022828
2021154
2020158
2019172
2018168