scispace - formally typeset
Search or ask a question
Topic

Conductance

About: Conductance is a research topic. Over the lifetime, 8088 publications have been published within this topic receiving 235961 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This experiment provides a new tool for the investigation of the conductance of mesoscopic systems without the need for invasive probes and can be compared with recent theoretical predictions emphasizing the differences between isolated and connected geometries and the relation between ac conductance and persistent currents.
Abstract: We have measured the flux dependence of both the real and the imaginary conductance of $\mathrm{GaAs}/\mathrm{GaAlAs}$ isolated mesoscopic rings at 310 MHz. The rings are coupled to a highly sensitive electromagnetic superconducting microresonator and lead to a perturbation of the resonance frequency and quality factor. This experiment provides a new tool for the investigation of the conductance of mesoscopic systems without the need for invasive probes. The results obtained can be compared with recent theoretical predictions emphasizing the differences between isolated and connected geometries and the relation between ac conductance and persistent currents.

110 citations

Journal ArticleDOI
TL;DR: Theoretical and numerical results concerning the visibility of synaptically induced conductance changes from intracellular electrodes cast doubt on a large class of models of direction selectivity that rely onsynaptically mediated inhibitory conductance increases to veto or block excitatory conductances increases.
Abstract: A recent report has provided evidence that there are no significant increases in the neuronal input conductance during the response of cortical cells in cat visual cortex to non-preferred visual stimuli (Douglas et al., 1988). A criticism of experiments of this kind is that changes in the membrane conductance occurring in the dendritic tree may not be visible from electrodes that impale the soma. Our paper describes theoretical and numerical results concerning the visibility of synaptically induced conductance changes from intracellular electrodes, in both ideal and anatomically well-characterized cortical neurons. Based on earlier work by Rall (1967), we here derive theoretical expressions for the change in input conductance at any location in a passive dendritic tree resulting from activation of a single synapse and obtain bounds for the effects of multiple synapses. We find that the conductance change measured at the cell body is always less than the sum of the synaptic conductance changes and that this observed conductance change does not depend on the synaptic reversal potential. For the case of an infinite dendritic cylinder, the change in input resistance due to a single synaptic input decays exponentially with distance of the synapse from the recording site. Numerical simulations of synaptic inputs that change approximately as fast as the membrane time-constant produce an increase in input conductance that is only slightly less visible than that of a constant input. We also compute the changes in somatic input conductance of 2 morphologically identified pyramidal cells from cat visual cortex during activity of a single inhibitory basket cell with known synaptic input locations. We find that the increase in conductance due to the activity of the inhibitory basket cells is clearly visible from the cell body of the pyramidal cells and that a 70% reduction in the amplitude of excitation is associated with at least a 30% increase in somatic input conductance, which would be visible in intracellular recordings. Taken together with the negative experimental evidence of Douglas et al. (1988), our results cast doubt on a large class of models of direction selectivity that rely on synaptically mediated inhibitory conductance increases to veto or block excitatory conductances increases.

109 citations

Journal ArticleDOI
TL;DR: Measurements of the thermal Hall conductance in the first excited Landau level of the quantum Hall effect show the existence of a state with non-Abelian excitations and perform topological unitary transformations when braided, which can be useful for topological quantum computation.
Abstract: Topological states of matter are characterized by topological invariant, which are physical quantities whose values are quantized and do not depend on details of the measured system. Of these, the easiest to probe in experiments is the electrical Hall conductance, which is expressed in units of $e^2/h$ ($e$ the electron charge, $h$ the Planck's constant). In the fractional quantum Hall effect (FQHE), fractional quantized values of the electrical Hall conductance attest to topologically ordered states, which are states that carry quasi particles with fractional charge and anyonic statistics. Another topological invariant, which is much harder to measure, is the thermal Hall conductance, expressed in units of $\kappa_0T=(\pi^2kB^2/3h)T$ ($kB$ the Boltzmann constant, $T$ the temperature). For the quantized thermal Hall conductance, a fractional value attests that the probed state of matter is non-abelian. Quasi particles in non-abelian states lead to a ground state degeneracy and perform topological unitary transformations among ground states when braided. As such, they may be useful for topological quantum computation. In this paper, we report our measurements of the thermal Hall conductance for several quantum Hall states in the first excited Landau level. Remarkably, we find the thermal Hall conductance of the $ u=5/2$ state to be fractional, and to equal $2.5\kappa_0T$

109 citations

Journal ArticleDOI
TL;DR: Electrochemical gating is used to reversibly tune the conductance of two different organic molecules, both containing anthraquinone (AQ) centers, over >1 order of magnitude.
Abstract: Controlling charge transport through a single molecule connected to metallic electrodes remains one of the most fundamental challenges of nanoelectronics. Here we use electrochemical gating to reversibly tune the conductance of two different organic molecules, both containing anthraquinone (AQ) centers, over >1 order of magnitude. For electrode potentials outside the redox-active region, the effect of the gate is simply to shift the molecular energy levels relative to the metal Fermi level. At the redox potential, the conductance changes abruptly as the AQ unit is oxidized/reduced with an accompanying change in the conjugation pattern between linear and cross conjugation. The most significant change in conductance is observed when the electron pathway connecting the two electrodes is via the AQ unit. This is consistent with the expected occurrence of destructive quantum interference in that case. The experimental results are supported by an excellent agreement with ab initio transport calculations.

109 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
79% related
Graphene
144.5K papers, 4.9M citations
78% related
Oxide
213.4K papers, 3.6M citations
78% related
Thin film
275.5K papers, 4.5M citations
77% related
Raman spectroscopy
122.6K papers, 2.8M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023457
2022828
2021154
2020158
2019172
2018168