scispace - formally typeset
Search or ask a question

Showing papers on "Conductive polymer published in 2013"


Journal ArticleDOI
TL;DR: Reducing dopant volume is found to be as important as optimizing carrier concentration when maximizing ZT in OSCs, and this stands in sharp contrast to ISCs, for which these parameters have trade-offs.
Abstract: The conversion efficiency of heat to electricity in thermoelectric materials depends on both their thermopower and electrical conductivity. It is now reported that, unlike their inorganic counterparts, organic thermoelectric materials show an improvement in both these parameters when the volume of dopant elements is minimized; furthermore, a high conversion efficiency is achieved in PEDOT:PSS blends.

1,366 citations


Journal ArticleDOI
TL;DR: Infiltration of a conducting polymer hydrogel into Si-based anodes results in a well-connected three-dimensional network structure consisting of Si nanoparticles conformally coated by the conducting polymer, demonstrating a cycle life of 5,000 cycles with over 90% capacity retention at current density.
Abstract: Silicon has a high-specific capacity as an anode material for Li-ion batteries, and much research has been focused on overcoming the poor cycling stability issue associated with its large volume changes during charging and discharging processes, mostly through nanostructured material design. Here we report incorporation of a conducting polymer hydrogel into Si-based anodes: the hydrogel is polymerized in-situ, resulting in a well-connected three-dimensional network structure consisting of Si nanoparticles conformally coated by the conducting polymer. Such a hierarchical hydrogel framework combines multiple advantageous features, including a continuous electrically conductive polyaniline network, binding with the Si surface through either the crosslinker hydrogen bonding with phytic acid or electrostatic interaction with the positively charged polymer, and porous space for volume expansion of Si particles. With this anode, we demonstrate a cycle life of 5,000 cycles with over 90% capacity retention at current density of 6.0 A g(-1).

1,181 citations


Journal ArticleDOI
TL;DR: This progress report summarizes the numerous DPP-containing polymers recently developed for field-effect transistor applications including diphenyl-DPP and dithienyl- DPP-based polymers as the most commonly reported materials and highlights fundamental structure-property relations such as the relationships between the thin film morphologies and the charge carrier mobilities observed for D PP- containing polymers.
Abstract: This progress report summarizes the numerous DPP-containing polymers recently developed for field-effect transistor applications including diphenyl-DPP and dithienyl-DPP-based polymers as the most commonly reported materials, but also difuranyl-DPP, diselenophenyl-DPP and dithienothienyl-DPP-containing polymers. We discuss the hole and electron mobilities that were reported in relation to structural properties such as alkyl substitution patterns, polymer molecular weights and solid state packing, as well as electronic properties including HOMO and LUMO energy levels. We moreover consider important aspects of ambipolar charge transport and highlight fundamental structure-property relations such as the relationships between the thin film morphologies and the charge carrier mobilities observed for DPP-containing polymers.

782 citations


Journal ArticleDOI
TL;DR: In this paper, a review of conjugated polymers with 1D and 2D topological structures is presented, and a design approach for the alternating donor-acceptor (D-A) copolymers is proposed.

668 citations


Journal ArticleDOI
TL;DR: The capability of three of the most well-known conductive polymers in improving long-term cycling stability and high-rate performance of the sulfur cathode decreased in the order of PEDOT > PPY > PANI.
Abstract: Lithium sulfur batteries have brought significant advancement to the current state-of-art battery technologies because of their high theoretical specific energy, but their wide-scale implementation has been impeded by a series of challenges, especially the dissolution of intermediate polysulfides species into the electrolyte. Conductive polymers in combination with nanostructured sulfur have attracted great interest as promising matrices for the confinement of lithium polysulfides. However, the roles of different conductive polymers on the electrochemical performances of sulfur electrode remain elusive and poorly understood due to the vastly different structural configurations of conductive polymer–sulfur composites employed in previous studies. In this work, we systematically investigate the influence of different conductive polymers on the sulfur cathode based on conductive polymer-coated hollow sulfur nanospheres with high uniformity. Three of the most well-known conductive polymers, polyaniline (PANI)...

606 citations


Journal ArticleDOI
TL;DR: In this review, the basic properties of polyaniline nanowires including chemical structures, redox chemistry, and method of synthesis are discussed and a comprehensive literature survey on chemiresistive/conductometric sensors based on polyAniline Nanowires is presented.
Abstract: One dimensional polyaniline nanowire is an electrically conducting polymer that can be used as an active layer for sensors whose conductivity change can be used to detect chemical or biological species. In this review, the basic properties of polyaniline nanowires including chemical structures, redox chemistry, and method of synthesis are discussed. A comprehensive literature survey on chemiresistive/conductometric sensors based on polyaniline nanowires is presented and recent developments in polyaniline nanowire-based sensors are summarized. Finally, the current limitations and the future prospect of polyaniline nanowires are discussed.

365 citations


Journal ArticleDOI
TL;DR: This review article concentrates on the electrochemical biosensor systems with conducting polymers, including polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polycarbazole, polyaniline, polyphenol,poly(o-phenylenediamine), polyacetylene, polyfuran and their derivatives.

356 citations


Journal ArticleDOI
TL;DR: Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction, showing superior rate capability and cycling performance.
Abstract: Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction. A combination of large surface area with porous structure, fast ion/electron transport, and mechanical integrity renders this material attractive as a lithium-ion anode, showing superior rate capability and cycling performance.

302 citations


Journal ArticleDOI
01 Dec 2013-Displays
TL;DR: It has been discovered that the conductivity of as-prepared PEDot:PSS from its aqueous solution can be significantly enhanced by adding organic compounds like high-boiling point polar organic solvents, ionic liquids and surfactants or through a post-treatment of PEDOT: PSS films with organic compounds.

298 citations


Journal ArticleDOI
TL;DR: Using planar junctions between the conducting polymer PEDOT:PSS and various electrolytes, it is possible to inject common ions and directly observe their transit through the film and a straightforward estimate of the ion drift mobilities is estimated.
Abstract: Using planar junctions between the conducting polymer PEDOT:PSS and various electrolytes, it is possible to inject common ions and directly observe their transit through the film. The 1D geometry of the experiment allows a straightforward estimate of the ion drift mobilities.

274 citations


Journal ArticleDOI
TL;DR: In this article, the main drawback of PANI is lack of solubility, which explains its limited processability due to a rigid backbone, and various procedures have been adapted to improve PANI's processability.

Journal ArticleDOI
TL;DR: In this article, the authors report on the recent progress in designing and fabricating different kinds of nanostructured electrodes, including electrical double layer based electrodes such as porous carbons and graphene, and faradic reaction based electrodes, such as metal oxides/hydroxides and conductive polymers.
Abstract: The fast growing interest in portable electronic devices and electric vehicles has stimulated extensive research in high performance energy storage devices, such as supercapacitors. Nanostructured electrodes can achieve high electrochemical performances in supercapacitors owing to their high surface atom ratio, tuneable texture and unique size-dependent properties that can afford effective electrolyte diffusion and improved charge transportation and storage during charging–discharging. This review reports on the recent progress in designing and fabricating different kinds of nanostructured electrodes, including electrical double layer based electrodes such as porous carbons and graphene, and Faradic reaction based electrodes such as metal oxides/hydroxides and conductive polymers. Furthermore, the review also summarizes the advances of hybrid electrodes, which store charges by both mechanisms, such as porous carbons–metal oxides/hydroxides, porous carbons–conductive polymers, graphene–metal oxides/hydroxides, and graphene–conductive polymers. Finally, we provide some perspectives as to the future directions of this intriguing field.

Journal ArticleDOI
TL;DR: In this paper, a mixed micromechanics model was developed to predict the overall electrical conductivity of carbon nanotube (CNT) polymer nanocomposites, where electron hopping and conductive networks were incorporated into the model by introducing an interphase layer and considering the effective aspect ratio of CNTs.
Abstract: A mixed micromechanics model was developed to predict the overall electrical conductivity of carbon nanotube (CNT)–polymer nanocomposites. Two electrical conductivity mechanisms, electron hopping and conductive networks, were incorporated into the model by introducing an interphase layer and considering the effective aspect ratio of CNTs. It was found that the modeling results agree well with the experimental data for both single-wall carbon nanotube and multi-wall carbon nanotube based nanocomposites. Simulation results suggest that both electron hopping and conductive networks contribute to the electrical conductivity of the nanocomposites, while conductive networks become dominant as CNT volume fraction increases. It was also indicated that the sizes of CNTs have significant effects on the percolation threshold and the overall electrical conductivity of the nanocomposites. This developed model is expected to provide a more accurate prediction on the electrical conductivity of CNT–polymer nanocomposites and useful guidelines for the design and optimization of conductive polymer nanocomposites.

Journal ArticleDOI
TL;DR: In this paper, hexagonal boron nitride (h-BN) microplatelets are introduced as thermal conductive fillers into polyvinyl alcohol (PVA) to increase the thermal conductivity of a polymer.

Journal ArticleDOI
TL;DR: These robust and electrically conductive films are found to function as effective electrodes to fabricate transparent and flexible supercapacitors with a maximum specific capacitance of 233 F/g at a current density of 1 A/g.
Abstract: Polyaniline composite films incorporated with aligned multi-walled carbon nanotubes (MWCNTs) are synthesized through an easy electrodeposition process. These robust and electrically conductive films are found to function as effective electrodes to fabricate transparent and flexible supercapacitors with a maximum specific capacitance of 233 F/g at a current density of 1 A/g. It is 36 times of bare MWCNT sheet, 23 times of pure polyaniline and 3 times of randomly dispersed MWCNT/polyaniline film under the same conditions. The novel supercapacitors also show a high cyclic stability.

Journal ArticleDOI
TL;DR: This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization and the possibility of using these materials in stealth technology and for making futuristic radar absorbing materials (RAMs).
Abstract: Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)–tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix. EPR and XPS measurements reveal that increase in loading level of BaTiO3 results in a reduction of the doping level of PANI. The Ku-Band (12.4–18 GHz) network analysis of these composites shows exceptional microwave shielding response with absorption dominated total shielding effectiveness (SET) value of −71.5 dB (blockage of more than 99.99999% of incident radiation) which is the highest value reported in the literature. Such a high attenuation level, which critically depends on the fraction of BaTiO3 is attributed to optimized dielectric and electrical attributes. This demonstrates the possibility of using these materials in stealth technology and for making futuristic radar absorbing materials (RAMs).

Journal ArticleDOI
TL;DR: The superior electrochemical performance of the hollow nanofibers is attributed to their hollow structure, thin wall thickness, and orderly pore passages, which can drastically facilitate the ion diffusion and improve the utilization of the electroactive PANI during the charge-discharge processes.
Abstract: Hollow polyaniline (PANI) nanofibers with controllable wall thickness are fabricated by in situ polymerization of aniline using the electrospun poly(amic acid) fiber membrane as a template. A maximum specific capacitance of 601 F g–1 has been achieved at 1 A g–1, suggesting the potential application of hollow PANI nanofibers for supercapacitors. The superior electrochemical performance of the hollow nanofibers is attributed to their hollow structure, thin wall thickness, and orderly pore passages, which can drastically facilitate the ion diffusion and improve the utilization of the electroactive PANI during the charge–discharge processes. Furthermore, the high flexibility of the self-standing fiber membrane template provides possibilities for the facile construction and fabrication of conducting polymers with hollow nanostructures, which may find potential applications in various high-performance electrochemical devices.

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the recent advances in the chemistry, characterization and applications of polymers with redox properties and highlight the most popular applications of these polymers in energy, materials science and biomedical fields.

Journal ArticleDOI
TL;DR: In this paper, a self-assembly process was used to construct a 3D, compactly interconnected graphene network in a polystyrene (PS) and ethylene vinyl acetate (EVA) matrix.
Abstract: Polymer-based materials with high electrical conductivity are of considerable interest because of their wide range of applications. The construction of a 3D, compactly interconnected graphene network can offer a huge increase in the electrical conductivity of polymer composites. However, it is still a great challenge to achieve desirable 3D architectures in the polymer matrix. Here, highly conductive polymer nanocomposites with 3D compactly interconnected graphene networks are obtained using a self-assembly process. Polystyrene (PS) and ethylene vinyl acetate (EVA) are used as polymer matrixes. The obtained PS composite film with 4.8 vol% graphene shows a high electrical conductivity of 1083.3 S/m, which is superior to that of the graphene composite prepared by a solvent mixing method. The electrical conductivity of the composites is closely related to the compact contact between graphene sheets in the 3D structures and the high reduction level of graphene sheets. The obtained EVA composite films with the 3D graphene structure not only show high electrical conductivity but also exhibit high flexibility. Importantly, the method to fabricate 3D graphene structures in polymer matrix is facile, green, low-cost, and scalable, providing a universal route for the rational design and engineering of highly conductive polymer composites.

Journal ArticleDOI
TL;DR: The synthesis of ultrafine S nanoparticles with diameter 10 ~ 20 nm via a membrane-assisted precipitation technique and encapsulation of conducting PEDOT shell restricts the polysulfides diffusion, alleviates self-discharging and the shuttle effect, and thus enhances the cycling stability.
Abstract: We report the synthesis of ultrafine S nanoparticles with diameter 10 ~ 20 nm via a membrane-assisted precipitation technique. The S nanoparticles were then coated with conducting poly (3,4-ethylenedioxythiophene) (PEDOT) to form S/PEDOT core/shell nanoparticles. The ultrasmall size of S nanoparticles facilitates the electrical conduction and improves sulfur utilization. The encapsulation of conducting PEDOT shell restricts the polysulfides diffusion, alleviates self-discharging and the shuttle effect, and thus enhances the cycling stability. The resulting S/PEDOT core/shell nanoparticles show initial discharge capacity of 1117 mAh g(-1) and a stable capacity of 930 mAh g(-1) after 50 cycles.

Journal ArticleDOI
TL;DR: The thermoelectric properties of a unique hybrid polymer-inorganic nanoparticle system consisting of tellurium nanowires and a conducting polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), can be optimized by both controlling the shape of the nanoparticles and the loading and doping of the polymeric matrix with polar solvents.
Abstract: The thermoelectric properties of a unique hybrid polymer–inorganic nanoparticle system consisting of tellurium nanowires and a conducting polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), can be optimized by both controlling the shape of the nanoparticles and the loading and doping of the polymeric matrix with polar solvents. The mechanism for an observed improvement in power factor is attributed to the unique conducting nature of PEDOT:PSS, which exhibits a transition from a hopping transport-dominated regime to a carrier scattering-dominated regime upon doping with polar solvents. Near this transition, the electrical conductivity can be improved without significantly reducing the thermopower. Relying on this principle, the power factor optimization for this new thermoelectric material is experimentally carried out and found to exceed 100 μW m−1 K−2, which is nearly five orders of magnitude greater than pure PEDOT:PSS.

Journal ArticleDOI
TL;DR: Growth of highly uniform and well-aligned ZnO nanowire arrays on graphene by modifying the graphene surface with conductive polymer interlayers is demonstrated and it is demonstrated that it can serve as a viable replacement for ITO in various photovoltaic device configurations.
Abstract: Growth of semiconducting nanostructures on graphene would open up opportunities for the development of flexible optoelectronic devices, but challenges remain in preserving the structural and electrical properties of graphene during this process. We demonstrate growth of highly uniform and well-aligned ZnO nanowire arrays on graphene by modifying the graphene surface with conductive polymer interlayers. On the basis of this structure, we then demonstrate graphene cathode-based hybrid solar cells using two different photoactive materials, PbS quantum dots and the conjugated polymer P3HT, with AM 1.5G power conversion efficiencies of 4.2% and 0.5%, respectively, approaching the performance of ITO-based devices with similar architectures. Our method preserves beneficial properties of graphene and demonstrates that it can serve as a viable replacement for ITO in various photovoltaic device configurations.

Journal ArticleDOI
19 Nov 2013-ACS Nano
TL;DR: The insertion of an intermediate 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) layer into hybrid heterojunction solar cells based on silicon nanowires and conjugate polymer poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) improves the device characteristics and assurances for reliability.
Abstract: Interface carrier recombination currently hinders the performance of hybrid organic–silicon heterojunction solar cells for high-efficiency low-cost photovoltaics. Here, we introduce an intermediate 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) layer into hybrid heterojunction solar cells based on silicon nanowires (SiNWs) and conjugate polymer poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS). The highest power conversion efficiency reaches a record 13.01%, which is largely ascribed to the modified organic surface morphology and suppressed saturation current that boost the open-circuit voltage and fill factor. We show that the insertion of TAPC increases the minority carrier lifetime because of an energy offset at the heterojunction interface. Furthermore, X-ray photoemission spectroscopy reveals that TAPC can effectively block the strong oxidation reaction occurring between PEDOT:PSS and silicon, which improves the device characteristics and assurances for reliability. These learn...

Journal ArticleDOI
TL;DR: "Solvophobic" and "electrostatic" interactions are proposed to account for the preferential growth of CP along metal oxides to form core/shell heterostructures to pave the way for developing new functional materials with enhanced properties or new applications.
Abstract: High-quality metal oxide/conducting polymer (CP) heterostructured nanoarrays are fabricated by controllable electrochemical polymerization of CP shells on preformed metal oxides nanostructures for both electrochromic and electrochemical energy storage applications. Coaxial and branched CP shells can be obtained on different backbones (nanowire, nanorod, and nanoflake) simply by controlling the electrodeposition time. “Solvophobic” and “electrostatic” interactions are proposed to account for the preferential growth of CP along metal oxides to form core/shell heterostructures. The coaxial TiO2/polyaniline core/shell nanorod arrays exhibit remarkable electrochromic performance with rich color changes, fast optical modulation, and superior cycling stability. In addition, the Co3O4/polyaniline core/shell nanowire arrays are evaluated as an anode material of Li ion battery and exhibit enhanced electrochemical property with higher and more stable capacity than the bare Co3O4 nanowires electrode. These unique org...

Journal ArticleDOI
TL;DR: It is reported that the g-C₃N₄ exhibits photocatalytic activity for H₂ evolution from pure water and the activity is dramatically improved by loading highly dispersed conductive polymer nanoparticles.
Abstract: Developing new methods to improve the photocatalytic activity of graphitic carbon nitride (g-C3N4) for hydrogen (H2) evolution has attracted intensive research interests. Here, we report that the g-C3N4 exhibits photocatalytic activity for H2 evolution from pure water. And, the activity is dramatically improved by loading highly dispersed conductive polymer nanoparticles. The H2 evolution rate increases up to 50 times for g-C3N4 with 1.5 wt% polypyrrole (PPy) nanoparticles on the surface. The reaction proceeding in a pure water system excludes the need for sacrificial agents. The role of the highly conductive PPy in enhancing H2 evolution is as a surface junction to increase the number of photoinduced electrons, and to facilitate electron transfer to the interface.

Journal ArticleDOI
Yan Liu1, Yao Zhang1, Guoheng Ma1, Zan Wang1, Kaiyu Liu1, Hongtao Liu1 
TL;DR: A promising supercapacitor material based on graphene/polypyrrole (PPy) has been successfully synthesized via in situ oxidation polymerization of pyrrole monomers in aqueous graphene oxide (GO) solutions, followed by chemical reduction using ethylene glycol (EG).

Journal ArticleDOI
TL;DR: In this paper, a remarkable energy density of 84 W h kg(cell)−1 and a power density of 182 kW kg (cell) −1 have been achieved for full-cell pseudocapacitors using conducting polymer nanotubes (polyaniline) as electrode materials and ionic liquid as electrolytes.
Abstract: A remarkable energy density of 84 W h kg(cell)−1 and a power density of 182 kW kg(cell)−1 have been achieved for full-cell pseudocapacitors using conducting polymer nanotubes (polyaniline) as electrode materials and ionic liquid as electrolytes. The polyaniline nanotubes were synthesized by a one-step in situ chemical polymerization process utilizing MnO2 nanotubes as sacrificial templates. The polyaniline-nanotube pseudocapacitors exhibit much better electrochemical performance than the polyaniline-nanofiber pseudocapacitors in both acidic aqueous and ionic liquid electrolytes. Importantly, the incorporation of ionic liquid with polyaniline-nanotubes has drastically improved the energy storage capacity of the PAni-nanotube pseudocapacitors by a factor of ∼5 times compared to that of the PAni-nanotube pseudocapacitors in the acidic aqueous electrolyte. Furthermore, even after 10 000 cycles, the PAni-nanotube pseudocapacitors in the ionic liquid electrolyte maintain sufficient high energy density and can light LEDs for several minutes, with only 30 s quick charge.

Journal ArticleDOI
TL;DR: It is demonstrated that PANi synthesis and hydrogel crosslinking combine to enable the design of materials with suitable conductive behaviour and enhances water retention/proton conductivity by more than one order of magnitude.
Abstract: Only recently polymers with intrinsic conductive properties have been studied in relation to their incorporation into bioactive scaffolds for use in tissue engineering. The reason for this interest is that such scaffolds could electrically stimulate cells and thus regulate specific cellular activities, and by this means influence the process of regeneration of those tissues that respond to electrical impulses. In our work, macroporous hydrogels are developed with controlled pore morphology and conductive properties to enable sufficient cell signaling to supply events inherent to nerve regeneration. A hybrid material has been prepared by in situ precipitation of polyaniline (PANi) in polyethyleneglycol diacrylate (PEGDA) solution, followed by crosslinking via UV irradiation. A porous architecture, characterized by macropores from 136 μm to 158 μm in size, has been achieved by sodium chloride particle leaching. In this work, we demonstrate that PANi synthesis and hydrogel crosslinking combine to enable the design of materials with suitable conductive behaviour. The presence of PANi evidently increased the electrical conductivity of the hybrid material from (1.1 ± 0.5) × 10−3 mS/cm with a PANi content of 3wt%. The hydrophilic nature of PANi also enhanced water retention/proton conductivity by more than one order of magnitude. In vitro studies confirmed that 3 wt% PANi also improve the biological response of PC12 and hMSC cells. Hybrid PANi/PEGDA macroporous hydrogels supplement new functionalities in terms of morphological and conductive properties, both of which are essential prerequisites to drive nerve cells in regenerative processes.

Journal ArticleDOI
TL;DR: 3D conductive scaffolds prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass are shown to be structurally more favorable for bone tissue engineering.
Abstract: Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli.

Journal ArticleDOI
TL;DR: A review of recent advances in conjugated polymers and their application in energy storage is presented in this article, with a focus on polyaniline electrodes and their potential for energy storage.
Abstract: This review covers recent advances in conjugated polymers and their application in energy storage. Conjugated polymers are promising cost-effective, lightweight, and flexible electrode materials. The operating principles of conjugated polymers are presented within the framework of their potential for energy storage. Special focus is given to polyaniline electrodes. Recent advances are reviewed including new methods of synthesis, nanostructuring, and assembly. Also, covered are applications that take full advantage of the mechanical properties of conjugated polymers and future applications of these novel materials. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013