scispace - formally typeset
Search or ask a question
Topic

Conductive polymer

About: Conductive polymer is a research topic. Over the lifetime, 21817 publications have been published within this topic receiving 692491 citations. The topic is also known as: intrinsically conducting polymer & ICP.


Papers
More filters
Journal ArticleDOI
01 Mar 2003-Polymer
TL;DR: In this article, the anionic surfactant was used to improve the stability of conductivity of polypyrrole but reduced the electrical stability of polyaniline, and the conductivity changes in both polymers during thermal ageing were measured at 175°C.

205 citations

Journal ArticleDOI
TL;DR: In this paper, the surface characterization of commercially available indium-tinoxide (ITO) thin films, using photoelectron spectroscopies (XPS and UPS) and electrochemistry of chemisorbed probe molecules such as ferrocene dicarboxylic acid (Fc(COOH)2), 3-thiophene acetic acid (3-TAA), and subsequent modification of these interfaces with electrochemically grown conducting polymer (CP) films is introduced.

205 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the advantages and mechanisms of 3D interconnected heat-conductive networks for preparing thermally conductive polymer-based composites and highlight new advancements in the design and fabrication of three-dimensional interconnected heat conductive networks as well as their application in improving the k of polymers.
Abstract: With the development of science and technology, microelectronic components have evolved to become increasingly integrated and miniaturized. As a result, thermal management, which can seriously impact the function, reliability, and lifetime of such components, has become a critical issue. Recently, the use of polymer-based thermal interface materials (TIMs) in thermal management systems has attracted considerable attention in view of the superior comprehensive properties of the former. Compared with designing and fabricating a polymer with an intrinsically high thermal conductivity, a more effective and widely used strategy for improving the heat conductivity is to fill a polymer matrix with a thermally conductive filler. Specifically, three-dimensional (3D) interconnected heat-conductive networks can increase the thermal conductivity (k) of polymers more effectively than dispersed fillers can, owing to their intrinsic continuous structures. In this review, we first introduce the heat conduction mechanisms and the problems associated with polymer-based TIMs fabricated using engineering polymer chains and traditional filling methods. Next, we discuss the advantages and mechanisms of 3D interconnected heat-conductive networks for preparing thermally conductive polymer-based composites. In addition, we highlight new advancements in the design and fabrication of 3D thermally conductive networks as well as their application in improving the k of polymers. Our exhaustive review of 3D interconnected networks includes graphene, carbon nanotubes, boron nitride, metal and other 3D hybrid architectures. The key structural parameters and control methods for improving the thermal properties of polymer composites are outlined. Finally, we summarize some effective strategies and possible challenges for the development of polymer-based thermally conductive composites via integration with 3D interconnected networks.

205 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a morphological model to explain the influence of co-solvents in poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and showed that the simple addition of a suitable wt% of a cosolvent, either ethylene glycol (EG) or dimethyl sulfoxide (DMSO), in PEDOT can significantly enhance the performance of hybrid solar cells.
Abstract: Conducting polymer poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) is gaining technological importance for the fabrication of organic and organic–inorganic heterostructure devices. The conductivity of PEDOT:PSS can be improved by the addition of co-solvents. Here, we show that the simple addition of a suitable wt% of a co-solvent, either ethylene glycol (EG) or dimethyl sulfoxide (DMSO), in PEDOT:PSS can significantly enhance the performance of hybrid solar cells. We provide a morphological model to explain the influence of the co-solvents in PEDOT:PSS, in which the co-solvent modifies the internal crystalline ordering of individual PEDOT nanocrystals that increases the crystal size and forms closely packed nanocrystals, and it also facilitates rearrangement of PSS that reduces its surface chain networks to enhance the polymer conductivity and hybrid solar cell properties. A hybrid solar cell made of EG 7 wt% modified PEDOT:PSS on planar Si exhibits an exceptionally high power conversion efficiency exceeding 12% for the first time.

205 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Oxide
213.4K papers, 3.6M citations
90% related
Polymerization
147.9K papers, 2.7M citations
88% related
Thin film
275.5K papers, 4.5M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023347
2022701
2021738
2020845
2019942
2018934