scispace - formally typeset
Search or ask a question
Topic

Conductive polymer

About: Conductive polymer is a research topic. Over the lifetime, 21817 publications have been published within this topic receiving 692491 citations. The topic is also known as: intrinsically conducting polymer & ICP.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present an overview of various recent synthetic approaches involving template free and template oriented techniques suitable for the growth of nanomaterials of conjugated polymers, their merits and application in making nanodevices.
Abstract: Nanomaterials of conjugated polymers are found to have superior performance relative to conventional materials due to their much larger exposed surface area. The present paper gives an overview of various recent synthetic approaches involving template free and template oriented techniques suitable for the growth of nanomaterials of conjugated polymers, their merits and application in making nanodevices. The characteristics of nano-structured conducting polymers and polymer nanocomposites, their application in sensors/biosensors and advances made in this field are reviewed.

492 citations

Journal ArticleDOI
TL;DR: The physical and chemical properties of a new class of lithium conducting polymer electrolytes formed by dispersing ceramic powders at the nanoscale particle size into a poly(ethylenoxide) (PEO)− lithium salt, LiX complexes, are reported and discussed in this paper.
Abstract: The physical and chemical properties of a new class of lithium conducting polymer electrolytes formed by dispersing ceramic powders at the nanoscale particle size into a poly(ethylenoxide) (PEO)− lithium salt, LiX complexes, are reported and discussed. These true solid-state PEO−LiX nanocomposite polymer electrolytes have in the 30−80 °C range an excellent mechanical stability (due to the network of the ceramic fillers into the polymer bulk) and high ionic conductivity (promoted by the high surface area of the dispersed fillers). These important and unique properties are accompanied by a wide electrochemical stability and by a good compatibility with the lithium electrode (assured by the absence of any liquids and by the interfacial stabilizing action of the dispersed filler), all this making these nanocomposite electrolytes of definite interest for the development of advanced rechargeable lithium batteries.

490 citations

Patent
03 Jun 1993
TL;DR: In this article, a conductive polymer composition which has low resistivity and good electrical stability was proposed for circuit protection devices, which are particularly useful for circuit-layer protection devices.
Abstract: A conductive polymer composition which has low resistivity and good electrical stability. In one aspect the composition comprises a nonconductive filler which is a dehydrated metal oxide. In an another aspect the composition comprises a conductive filler which is metal particles in which the bulk density is less than 0.15 times the true density. Compositions of the invention are particularly useful for circuit protection devices (1).

489 citations

Journal ArticleDOI
TL;DR: A molecular mechanism for the oxidation of aniline is proposed in this paper, which explains the specific features of polyaniline oligomerization and polymerization in various acidity ranges.
Abstract: Polyaniline is one of the most important conducting and responsive polymers. A molecular mechanism for the oxidation of aniline is proposed. This mechanism explains the specific features of aniline oligomerization and polymerization in various acidity ranges. The formation of polyaniline precipitates, colloids and thin films is reviewed and discussed on the basis of the chemistry of aniline oxidation. The generation of nanostructures, i.e. granules, nanotubes, nanowires and microspheres, is also considered. Oligomers containing phenazine constitutional units play an important role in self-assembly to form templates. Polyaniline chains then grow from these templates and produce the various individual morphologies. Copyright © 2008 Society of Chemical Industry

487 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Oxide
213.4K papers, 3.6M citations
90% related
Polymerization
147.9K papers, 2.7M citations
88% related
Thin film
275.5K papers, 4.5M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023347
2022701
2021738
2020845
2019942
2018934