scispace - formally typeset
Search or ask a question
Topic

Conductive polymer

About: Conductive polymer is a research topic. Over the lifetime, 21817 publications have been published within this topic receiving 692491 citations. The topic is also known as: intrinsically conducting polymer & ICP.


Papers
More filters
Journal ArticleDOI
TL;DR: Interfacial polymerization is shown to be readily scalable to produce bulk quantities of nanofibers and the measured Brunauer-Emmett-Teller surface area of the nan ofibers increases as the average diameter decreases.
Abstract: Uniform polyaniline nanofibers readily form using interfacial polymerization without the need for templates or functional dopants. The average diameter of the nanofibers can be tuned from 30 nm using hydrochloric acid to 120 nm using perchloric acid as observed via both scanning and transmission electron microscopy. When camphorsulfonic acid is employed, 50 nm average diameter fibers form. The measured Brunauer-Emmett-Teller surface area of the nanofibers increases as the average diameter decreases. Further characterization including molecular weight, optical spectroscopy, and electrical conductivity are presented. Interfacial polymerization is shown to be readily scalable to produce bulk quantities of nanofibers.

1,291 citations

Journal ArticleDOI
22 Feb 2002-Science
TL;DR: Conjugated polymers and indium arsenide–based nanocrystals were used to create near-infrared plastic light-emitting diodes that effectively covers the short-wavelength telecommunications band.
Abstract: Conjugated polymers and indium arsenide–based nanocrystals were used to create near-infrared plastic light-emitting diodes. Emission was tunable from 1 to 1.3 micrometers—a range that effectively covers the short-wavelength telecommunications band—by means of the quantum confinement effects in the nanocrystals. The external efficiency value (photons out divided by electrons in) is ∼0.5% (that is, >1% internal) and is mainly limited by device architecture. The near-infrared emission did not overlap the charge-induced absorption bands of the polymer.

1,286 citations

Journal ArticleDOI
TL;DR: In this paper, the emeraldine oxidation state of polyaniline was converted from an insulator to a metal by treatment with 1M aqueous HCl to form the corresponding salt, emeraldines hydrochloride.

1,286 citations

Journal ArticleDOI
TL;DR: In this article, a solvent post-treatment method was used to optimize poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as stand-alone electrodes for organic solar cells.
Abstract: Highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as stand-alone electrodes for organic solar cells have been optimized using a solvent post-treatment method. The treated PEDOT:PSS films show enhanced conductivities up to 1418 S cm−1, accompanied by structural and chemical changes. The effect of the solvent treatment on PEDOT:PSS has been investigated in detail and is shown to cause a reduction of insulating PSS in the conductive polymer layer. Using these optimized electrodes, ITO-free, small molecule organic solar cells with a zinc phthalocyanine (ZnPc):fullerene C60 bulk heterojunction have been produced on glass and PET substrates. The system was further improved by pre-heating the PEDOT:PSS electrodes, which enhanced the power conversion efficiency to the values obtained for solar cells on ITO electrodes. The results show that optimized PEDOT:PSS with solvent and thermal post-treatment can be a very promising electrode material for highly efficient flexible ITO-free organic solar cells.

1,277 citations

Journal ArticleDOI
TL;DR: The motivation for lithium battery development and a discussion of ion conducting polymers as separators begin this review, which includes a short history of polymer electrolyte research, and a summary of the major parameters that determine lithium ion transport in polymer matrices.
Abstract: The motivation for lithium battery development and a discussion of ion conducting polymers as separators begin this review, which includes a short history of polymer electrolyte research, a summary of the major parameters that determine lithium ion transport in polymer matrices, and consequences for solid polymer electrolyte development. Two major strategies for the application of ion conducting polymers as separators in lithium batteries are identified: One is the development of highly conductive materials via the crosslinking of mobile chains to form networks, which are then swollen by lithium salt solutions ("gel electrolytes"). The other is the construction of solid polymer electrolytes (SPEs) with supramolecular architectures, which intrinsically give rise to much enhanced mechanical strength. These materials as yet exhibit relatively common conductivity levels but may be applied as very thin films. Molecular composites based on poly(p-phenylene)- (PPP)-reinforced SPEs are a striking example of this direction. Neither strategy has as yet led to a "breakthrough" with respect to technical application, at least not for electrically powered vehicles. Before being used as separators, the gel electrolytes must be strengthened, while the molecularly reinforced solid polymer electrolytes must demonstrate improved conductivity.

1,273 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Oxide
213.4K papers, 3.6M citations
90% related
Polymerization
147.9K papers, 2.7M citations
88% related
Thin film
275.5K papers, 4.5M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023347
2022701
2021738
2020845
2019942
2018934