scispace - formally typeset
Search or ask a question
Topic

Conductive polymer

About: Conductive polymer is a research topic. Over the lifetime, 21817 publications have been published within this topic receiving 692491 citations. The topic is also known as: intrinsically conducting polymer & ICP.


Papers
More filters
Journal ArticleDOI
TL;DR: This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties as well as modern solid state lighting and displays.
Abstract: A recent advance in the field of light emitting polymers has been the discovery of electroluminescent conjugated polymers, that is, kind of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials of the commercial market in light-emitting devices such as light-emitting diodes (LED) and polymer laser devices. This review provides information on unique properties of conjugated polymers and how they have been optimized to generate these properties. The review is organized in three sections focusing on the major advances in light emitting materials, recent literature survey and understanding the desirable properties as well as modern solid state lighting and displays. Recently, developed conjugated polymers are also functioning as roll-up displays for computers and mobile phones, flexible solar panels for power portable equipment as well as organic light emitting diodes in displays, in which television screens, luminous traffic, information signs, and light-emitting wallpaper in homes are also expected to broaden the use of conjugated polymers as light emitting polymers. The purpose of this review paper is to examine conjugated polymers in light emitting diodes (LEDs) in addition to organic solid state laser. Furthermore, since conjugated polymers have been approved as light-emitting organic materials similar to inorganic semiconductors, it is clear to motivate these organic light-emitting devices (OLEDs) and organic lasers for modern lighting in terms of energy saving ability. In addition, future aspects of conjugated polymers in LEDs were also highlighted in this review.

229 citations

Journal ArticleDOI
TL;DR: The superior electrochemical performance of the hollow nanofibers is attributed to their hollow structure, thin wall thickness, and orderly pore passages, which can drastically facilitate the ion diffusion and improve the utilization of the electroactive PANI during the charge-discharge processes.
Abstract: Hollow polyaniline (PANI) nanofibers with controllable wall thickness are fabricated by in situ polymerization of aniline using the electrospun poly(amic acid) fiber membrane as a template. A maximum specific capacitance of 601 F g–1 has been achieved at 1 A g–1, suggesting the potential application of hollow PANI nanofibers for supercapacitors. The superior electrochemical performance of the hollow nanofibers is attributed to their hollow structure, thin wall thickness, and orderly pore passages, which can drastically facilitate the ion diffusion and improve the utilization of the electroactive PANI during the charge–discharge processes. Furthermore, the high flexibility of the self-standing fiber membrane template provides possibilities for the facile construction and fabrication of conducting polymers with hollow nanostructures, which may find potential applications in various high-performance electrochemical devices.

228 citations

Journal ArticleDOI
TL;DR: In this article, an oxidative chemical vapor deposition (CVD) process is presented as an alternative to conventional solution-based processing of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films.
Abstract: An oxidative chemical vapor deposition (CVD) process is presented as an alternative to conventional solution-based processing of poly(3,4-ethylenedioxythiophene) (PEDOT) thin films. This solventless technique yields PEDOT with higher conductivities and conformally coats fibers and other high area morphologies, important for enhancing efficiencies in some organic electronic devices. The CVD method eliminates corrosive poly(styrenesulfonate) that is used to disperse PEDOT in an aqueous suspension for solution-based processing. A mechanistic approach is presented that favors the deposition of the conjugated, conducting form of PEDOT. We achieved conductivities as high as 105 S/cm and demonstrated films about 100 nm thick that do not crack upon bending and are more than 84% transparent to visible light. The compatibility of oxidative CVD deposition of PEDOT is demonstrated on silicon, glass, plastic, and paper substrates.

228 citations

Journal ArticleDOI
TL;DR: In this article, magnetic and conducting Fe3O4-polyaniline (PANI) nanoparticles with core-shell structure have been prepared in the presence of Fe 3O4 magnetic fluid in aqueous solution containing dodecylbenzene sulfonic acid sodium salt as a surfactant and dopant.

228 citations

Journal ArticleDOI
08 Sep 2005-Polymer
TL;DR: In this article, a new method for the synthesis of poly(3-alkylthiophene) block copolymers using vinyl terminated regioregular poly( 3-alklythiophenes) as precursors via atom transfer radical polymerization (ATRP) is described.

227 citations


Network Information
Related Topics (5)
Carbon nanotube
109K papers, 3.6M citations
92% related
Graphene
144.5K papers, 4.9M citations
91% related
Oxide
213.4K papers, 3.6M citations
90% related
Polymerization
147.9K papers, 2.7M citations
88% related
Thin film
275.5K papers, 4.5M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023347
2022701
2021738
2020845
2019942
2018934