scispace - formally typeset
Search or ask a question
Topic

Conductivity

About: Conductivity is a research topic. Over the lifetime, 46709 publications have been published within this topic receiving 966917 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the Brownian motion of nanoparticles at the molecular and nanoscale level is a key mechanism governing the thermal behavior of nanoparticle-fluid suspensions (nanofluids).
Abstract: We have found that the Brownian motion of nanoparticles at the molecular and nanoscale level is a key mechanism governing the thermal behavior of nanoparticle–fluid suspensions (“nanofluids”). We have devised a theoretical model that accounts for the fundamental role of dynamic nanoparticles in nanofluids. The model not only captures the concentration and temperature-dependent conductivity, but also predicts strongly size-dependent conductivity. Furthermore, we have discovered a fundamental difference between solid/solid composites and solid/liquid suspensions in size-dependent conductivity. This understanding could lead to design of nanoengineered next-generation coolants with industrial and biomedical applications in high-heat-flux cooling.

1,459 citations

Journal ArticleDOI
TL;DR: Experimental and computational results reveal that the oxide coating enables wetting of metallic lithium in contact with the garnet electrolyte surface and the lithiated-alumina interface allows effective lithium ion transport between the lithium metal anode and garnets electrolyte.
Abstract: Garnet-type solid-state electrolytes have attracted extensive attention due to their high ionic conductivity, approaching 1 mS cm-1, excellent environmental stability, and wide electrochemical stability window, from lithium metal to ∼6 V. However, to date, there has been little success in the development of high-performance solid-state batteries using these exceptional materials, the major challenge being the high solid-solid interfacial impedance between the garnet electrolyte and electrode materials. In this work, we effectively address the large interfacial impedance between a lithium metal anode and the garnet electrolyte using ultrathin aluminium oxide (Al2O3) by atomic layer deposition. Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) is the garnet composition of choice in this work due to its reduced sintering temperature and increased lithium ion conductivity. A significant decrease of interfacial impedance, from 1,710 Ω cm2 to 1 Ω cm2, was observed at room temperature, effectively negating the lithium metal/garnet interfacial impedance. Experimental and computational results reveal that the oxide coating enables wetting of metallic lithium in contact with the garnet electrolyte surface and the lithiated-alumina interface allows effective lithium ion transport between the lithium metal anode and garnet electrolyte. We also demonstrate a working cell with a lithium metal anode, garnet electrolyte and a high-voltage cathode by applying the newly developed interface chemistry.

1,443 citations

Journal ArticleDOI
01 Oct 1999-Polymer
TL;DR: In this paper, untreated catalytically-grown carbon nanotubes were dispersed in an epoxy matrix and the electrical properties of the composite were measured in order to relate the filler volume fraction to the electrical conductivity.

1,429 citations

Journal ArticleDOI
TL;DR: In this paper, the polycrystalline lithium lanthanum titanate Li0.34(1)La0.5O4.94(2) showed high ionic conductivity more than 2 × 10−5 S cm−1 (D.C.A.

1,304 citations

Journal ArticleDOI
TL;DR: In this article, aniline hydrochloride was oxidized with ammonium peroxydisulfate in aqueous medium at ambient temperature and the electrical conductivity of polyaniline was measured at room temperature.
Abstract: Eight persons from five institutions in different countries carried out polymerizations of aniline following the same preparation protocol. In a "standard" procedure, aniline hydrochloride was oxidized with ammonium peroxydisulfate in aqueous medium at ambient temperature. The yield of polyaniline was higher than 90% in all cases. The electrical conductivity of polyaniline hydrochloride thus prepared was 4.4 1.7 S cm(-1) (average of 59 samples), measured at room temperature. A product with defined electrical properties could be obtained in various laboratories by following the same synthetic procedure. The influence of reduced reaction temperature and increased acidity of the polymerization medium on polyaniline conductivity were also addressed. The conductivity changes occurring during the storage of polyaniline were monitored. The density of polyaniline hydrochloride was 1.329 g cm(-3). The average conductivity of corresponding polyaniline bases was 1.4 x 10(-8) S cm(-1), the density being 1.245 cm(-3). Additional changes in the conductivity take place during storage. Aging is more pronounced in powders than in compressed samples. As far as aging effects are concerned, their assessment is relative. The observed reduction in the conductivity by similar to10% after more than one-year storage is large but, compared with the low conductivity of corresponding polyaniline (PANI) base, such a change is negligible. For most applications, an acceptable level of conductivity may be maintained throughout the expected lifetime.

1,224 citations


Network Information
Related Topics (5)
Dielectric
169.7K papers, 2.7M citations
92% related
Oxide
213.4K papers, 3.6M citations
91% related
Thin film
275.5K papers, 4.5M citations
91% related
Graphene
144.5K papers, 4.9M citations
90% related
Carbon nanotube
109K papers, 3.6M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20232,083
20224,094
20211,621
20201,847
20191,947
20181,898