scispace - formally typeset
Search or ask a question
Topic

Configuration interaction

About: Configuration interaction is a research topic. Over the lifetime, 8754 publications have been published within this topic receiving 323099 citations. The topic is also known as: Configuration interaction method.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a detailed study of correlation effects in the oxygen atom was conducted, and it was shown that primitive basis sets of primitive Gaussian functions effectively and efficiently describe correlation effects.
Abstract: In the past, basis sets for use in correlated molecular calculations have largely been taken from single configuration calculations. Recently, Almlof, Taylor, and co‐workers have found that basis sets of natural orbitals derived from correlated atomic calculations (ANOs) provide an excellent description of molecular correlation effects. We report here a careful study of correlation effects in the oxygen atom, establishing that compact sets of primitive Gaussian functions effectively and efficiently describe correlation effects i f the exponents of the functions are optimized in atomic correlated calculations, although the primitive (s p) functions for describing correlation effects can be taken from atomic Hartree–Fock calculations i f the appropriate primitive set is used. Test calculations on oxygen‐containing molecules indicate that these primitive basis sets describe molecular correlation effects as well as the ANO sets of Almlof and Taylor. Guided by the calculations on oxygen, basis sets for use in correlated atomic and molecular calculations were developed for all of the first row atoms from boron through neon and for hydrogen. As in the oxygen atom calculations, it was found that the incremental energy lowerings due to the addition of correlating functions fall into distinct groups. This leads to the concept of c o r r e l a t i o n c o n s i s t e n t b a s i s s e t s, i.e., sets which include all functions in a given group as well as all functions in any higher groups. Correlation consistent sets are given for all of the atoms considered. The most accurate sets determined in this way, [5s4p3d2f1g], consistently yield 99% of the correlation energy obtained with the corresponding ANO sets, even though the latter contains 50% more primitive functions and twice as many primitive polarization functions. It is estimated that this set yields 94%–97% of the total (HF+1+2) correlation energy for the atoms neon through boron.

26,705 citations

Journal ArticleDOI
TL;DR: In this paper, a reliable procedure for calculating the electron affinity of an atom and present results for hydrogen, boron, carbon, oxygen, and fluorine (hydrogen is included for completeness).
Abstract: The calculation of accurate electron affinities (EAs) of atomic or molecular species is one of the most challenging tasks in quantum chemistry. We describe a reliable procedure for calculating the electron affinity of an atom and present results for hydrogen, boron, carbon, oxygen, and fluorine (hydrogen is included for completeness). This procedure involves the use of the recently proposed correlation‐consistent basis sets augmented with functions to describe the more diffuse character of the atomic anion coupled with a straightforward, uniform expansion of the reference space for multireference singles and doubles configuration‐interaction (MRSD‐CI) calculations. Comparison with previous results and with corresponding full CI calculations are given. The most accurate EAs obtained from the MRSD‐CI calculations are (with experimental values in parentheses) hydrogen 0.740 eV (0.754), boron 0.258 (0.277), carbon 1.245 (1.263), oxygen 1.384 (1.461), and fluorine 3.337 (3.401). The EAs obtained from the MR‐SD...

12,969 citations

Journal ArticleDOI
TL;DR: In this paper, a new augmented version of coupled-cluster theory, denoted as CCSD(T), is proposed to remedy some of the deficiencies of previous augmented coupledcluster models.

7,249 citations

Journal ArticleDOI
TL;DR: In this article, a general procedure for calculation of the electron correlation energy, starting from a single Hartree-Fock determinant, is introduced, and the relation of this method to coupled-cluster (CCSD) theory is discussed.
Abstract: A general procedure is introduced for calculation of the electron correlation energy, starting from a single Hartree–Fock determinant. The normal equations of (linear) configuration interaction theory are modified by introducing new terms which are quadratic in the configuration coefficients and which ensure size consistency in the resulting total energy. When used in the truncated configuration space of single and double substitutions, the method, termed QCISD, leads to a tractable set of quadratic equations. The relation of this method to coupled‐cluster (CCSD) theory is discussed. A simplified method of adding corrections for triple substitutions is outlined, leading to a method termed QCISD(T). Both of these new procedures are tested (and compared with other procedures) by application to some small systems for which full configuration interaction results are available.

4,194 citations

Journal ArticleDOI
TL;DR: In this article, a new internally contracted direct multiconfiguration-reference configuration interaction (MRCI) method is described which allows the use of much larger reference spaces than any previous MRCI method.
Abstract: A new internally contracted direct multiconfiguration–reference configuration interaction (MRCI) method is described which allows the use of much larger reference spaces than any previous MRCI method. The configurations with two electrons in the external orbital space are generated by applying pair excitation operators to the reference wave function as a whole, while the singly external and internal configurations are standard uncontracted spin eigenfunctions. A new efficient and simple method for the calculation of the coupling coefficients is used, which is well suited for vector machines, and allows the recalculation of all coupling coefficients each time they are needed. The vector H⋅c is computed partly in a nonorthogonal configuration basis. In order to test the accuracy of the internally contracted wave functions, benchmark calculations have been performed for F−, H2O, NH2, CH2, CH3, OH, NO, N2, and O2 at various geometries. The deviations of the energies obtained with internally contracted and uncontracted MRCI wave functions are mostly smaller than 1 mH and typically 3–5 times smaller than the deviations between the uncontracted MRCI and the full CI. Dipole moments, electric dipole polarizabilities, and electronic dipole transition moments calculated with uncontracted and contracted MRCI wave functions also are found to be in close agreement. The efficiency of the method is demonstrated in large scale calculations for the CN, NH3, CO2, and Cr2 molecules. In these calculations up to 3088 reference configurations and up to 154 orbitals were employed. The biggest calculation is equivalent to an uncontracted MRCI with more than 78 million configurations.

3,375 citations


Network Information
Related Topics (5)
Ab initio
57.3K papers, 1.6M citations
94% related
Excited state
102.2K papers, 2.2M citations
89% related
Ground state
70K papers, 1.5M citations
89% related
Ionization
67.7K papers, 1.3M citations
86% related
Absorption spectroscopy
66.1K papers, 1.4M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202319
202273
2021124
2020161
2019157
2018157