scispace - formally typeset

Topic

Configuration space

About: Configuration space is a(n) research topic. Over the lifetime, 5873 publication(s) have been published within this topic receiving 136193 citation(s).


Papers
More filters
Book
01 Jan 1990
TL;DR: This chapter discusses the configuration space of a Rigid Object, the challenges of dealing with uncertainty, and potential field methods for solving these problems.
Abstract: 1 Introduction and Overview.- 2 Configuration Space of a Rigid Object.- 3 Obstacles in Configuration Space.- 4 Roadmap Methods.- 5 Exact Cell Decomposition.- 6 Approximate Cell Decomposition.- 7 Potential Field Methods.- 8 Multiple Moving Objects.- 9 Kinematic Constraints.- 10 Dealing with Uncertainty.- 11 Movable Objects.- Prospects.- Appendix A Basic Mathematics.- Appendix B Computational Complexity.- Appendix C Graph Searching.- Appendix D Sweep-Line Algorithm.- References.

6,165 citations

Journal ArticleDOI
Abstract: A general procedure is introduced for calculation of the electron correlation energy, starting from a single Hartree–Fock determinant. The normal equations of (linear) configuration interaction theory are modified by introducing new terms which are quadratic in the configuration coefficients and which ensure size consistency in the resulting total energy. When used in the truncated configuration space of single and double substitutions, the method, termed QCISD, leads to a tractable set of quadratic equations. The relation of this method to coupled‐cluster (CCSD) theory is discussed. A simplified method of adding corrections for triple substitutions is outlined, leading to a method termed QCISD(T). Both of these new procedures are tested (and compared with other procedures) by application to some small systems for which full configuration interaction results are available.

4,048 citations

Journal ArticleDOI
Abstract: Following an historical introduction, the conventional canonical formulation of general relativity theory is presented. The canonical Lagrangian is expressed in terms of the extrinsic and intrinsic curvatures of the hypersurface ${x}^{0}=\mathrm{constant}$, and its relation to the asymptotic field energy in an infinite world is noted. The distinction between finite and infinite worlds is emphasized. In the quantum theory the primary and secondary constraints become conditions on the state vector, and in the case of finite worlds these conditions alone govern the dynamics. A resolution of the factor-ordering problem is proposed, and the consistency of the constraints is demonstrated. A 6-dimensional hyperbolic Riemannian manifold is introduced which takes for its metric the coefficient of the momenta in the Hamiltonian constraint. The geodesic incompletability of this manifold, owing to the existence of a frontier of infinite curvature, is demonstrated. The possibility is explored of relating this manifold to an infinite-dimensional manifold of 3-geometries, and of relating the structure of the latter manifold in turn to the dynamical behavior of space-time. The problem is approached through the WKB approximation and Hamilton-Jacobi theory. Einstein's equations are revealed as geodesic equations in the manifold of 3-geometries, modified by the presence of a "force term." The classical phenomenon of gravitational collapse shows that the force term is not powerful enough to prevent the trajectory of space-time from running into the frontier. The as-yet unresolved problem of determining when the collapse phenomenon represents a real barrier to the quantum-state functional is briefly discussed, and a boundary condition at the barrier is proposed. The state functional of a finite world can depend only on the 3-geometry of the hypersurface ${x}^{0}=\mathrm{constant}$. The label ${x}^{0}$ itself is irrelevant, and "time" must be determined intrinsically. A natural definition for the inner product of two such state functionals is introduced which, however, encounters difficulties with negative probabilities owing to the barrier boundary condition. In order to resolve these difficulties, a simplified model, the quantized Friedmann universe, is studied in detail. In order to obtain nonstatic wave functions which resemble a universe evolving, it is necessary to introduce a clock. In order that the combined wave functions of universe-cum-clock be normalizable, it turns out that the periods of universe and clock must be commensurable. Wave packets exhibiting quasiclassical behavior are constructed, and attention is called to the phenomenological character of "time." The innerproduct definition is rescued from its negative-probability difficulties by making use of the fact that probability flows in a closed finite circuit in configuration space. The article ends with some speculations on the uniqueness of the state functional of the actual universe. It is suggested that a viewpoint due to Everett should be adopted in its interpretation.

2,414 citations

Journal ArticleDOI
Abstract: This paper presents algorithms for computing constraints on the position of an object due to the presence of ther objects. This problem arises in applications that require choosing how to arrange or how to move objects without collisions. The approach presented here is based on characterizing the position and orientation of an object as a single point in a configuration space, in which each coordinate represents a degree of freedom in the position or orientation of the object. The configurations forbidden to this object, due to the presence of other objects, can then be characterized as regions in the configuration space, called configuration space obstacles. The paper presents algorithms for computing these configuration space obstacles when the objects are polygons or polyhedra.

1,967 citations

01 Jan 1987
Abstract: Following an historical introduction, the conventional canonical formulation of general relativity theory is presented. The canonical Lagrangian is expressed in terms of the extrinsic and intrinsic curvatures of the hypersurface ${x}^{0}=\mathrm{constant}$, and its relation to the asymptotic field energy in an infinite world is noted. The distinction between finite and infinite worlds is emphasized. In the quantum theory the primary and secondary constraints become conditions on the state vector, and in the case of finite worlds these conditions alone govern the dynamics. A resolution of the factor-ordering problem is proposed, and the consistency of the constraints is demonstrated. A 6-dimensional hyperbolic Riemannian manifold is introduced which takes for its metric the coefficient of the momenta in the Hamiltonian constraint. The geodesic incompletability of this manifold, owing to the existence of a frontier of infinite curvature, is demonstrated. The possibility is explored of relating this manifold to an infinite-dimensional manifold of 3-geometries, and of relating the structure of the latter manifold in turn to the dynamical behavior of space-time. The problem is approached through the WKB approximation and Hamilton-Jacobi theory. Einstein's equations are revealed as geodesic equations in the manifold of 3-geometries, modified by the presence of a "force term." The classical phenomenon of gravitational collapse shows that the force term is not powerful enough to prevent the trajectory of space-time from running into the frontier. The as-yet unresolved problem of determining when the collapse phenomenon represents a real barrier to the quantum-state functional is briefly discussed, and a boundary condition at the barrier is proposed. The state functional of a finite world can depend only on the 3-geometry of the hypersurface ${x}^{0}=\mathrm{constant}$. The label ${x}^{0}$ itself is irrelevant, and "time" must be determined intrinsically. A natural definition for the inner product of two such state functionals is introduced which, however, encounters difficulties with negative probabilities owing to the barrier boundary condition. In order to resolve these difficulties, a simplified model, the quantized Friedmann universe, is studied in detail. In order to obtain nonstatic wave functions which resemble a universe evolving, it is necessary to introduce a clock. In order that the combined wave functions of universe-cum-clock be normalizable, it turns out that the periods of universe and clock must be commensurable. Wave packets exhibiting quasiclassical behavior are constructed, and attention is called to the phenomenological character of "time." The innerproduct definition is rescued from its negative-probability difficulties by making use of the fact that probability flows in a closed finite circuit in configuration space. The article ends with some speculations on the uniqueness of the state functional of the actual universe. It is suggested that a viewpoint due to Everett should be adopted in its interpretation.

1,846 citations

Network Information
Related Topics (5)
Hamiltonian (quantum mechanics)

48.6K papers, 1M citations

84% related
Eigenvalues and eigenvectors

51.7K papers, 1.1M citations

83% related
Matrix (mathematics)

105.5K papers, 1.9M citations

81% related
Bounded function

77.2K papers, 1.3M citations

79% related
Nonlinear system

208.1K papers, 4M citations

78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20223
2021201
2020246
2019213
2018235
2017213