scispace - formally typeset
Search or ask a question

Showing papers on "Conformational change published in 1990"


Journal ArticleDOI
TL;DR: It is proposed that during infection the amino terminus of VP1 inserts into endosomal membranes and thus plays a role in the mechanism of cell entry, and cell-altered virions are able to attach to liposomes.
Abstract: Upon attachment to susceptible cells, poliovirus and a number of other picornaviruses undergo conformational transitions which result in changes in antigenicity, increased protease sensitivity, the loss of the internal capsid protein VP4, and a loss of the ability to attach to cells. These conformationally altered particles have been characterized by using a number of sequence-specific probes, including two proteases, a panel of antiviral monoclonal antibodies, and a panel of antisera against synthetic peptides which correspond to sequences from the capsid protein VP1. With these probes, cell-altered virus is clearly distinguishable from native and heat-inactivated virions. The probes also demonstrate that the cell-induced conformational change alters the accessibility of several regions of the virus. In particular, the amino terminus of VP1, which is entirely internal in the native virion, becomes externalized. Unlike native and heat-inactivated virus, cell-altered virions are able to attach to liposomes. The exposed amino terminus of VP1 is shown to be responsible for liposome attachment. We propose that during infection the amino terminus of VP1 inserts into endosomal membranes and thus plays a role in the mechanism of cell entry.

496 citations


Journal ArticleDOI
27 Jul 1990-Cell
TL;DR: It is shown that peptides bind class I molecules during assembly and it is demonstrated that the conformational change induced in the heavy chain is influenced by the concentrations of both peptide and beta 2-microglobulin.

480 citations


Journal ArticleDOI
24 May 1990-Nature
TL;DR: Crystals of Ha-Ras p21 with caged GTP at the active site have been used to investigate the conformational changes of p21 on GTP hydrolysis and the structure of the short-lived p21-GTP complex was determined by Laue diffraction methods.
Abstract: Crystals of Ha-Ras p21 with caged GTP at the active site have been used to investigate the conformational changes of p21 on GTP hydrolysis. The structure of the short-lived p21.GTP complex was determined by Laue diffraction methods. After GTP hydrolysis, substantial structural changes occur in the parts of the molecule implicated in the interaction with GTPase-activating protein. The trigger for this process seems to be a change in coordination of the active-site Mg2+ ion as a result of loss of the gamma-phosphate of GTP.

470 citations


Journal ArticleDOI
19 Apr 1990-Nature
TL;DR: Crystallographic studies of human lactoferrin and rabbit serum transferrin in their iron-bound forms have characterized their binding sites and protein structure and show that a substantial conformational change accompanies iron binding and release, which has implications for transferrin function and for binding proteins in general.
Abstract: Proteins of the transferrin family, which contains serum transferrin and lactoferrin, control iron levels in higher animals through their very tight (Kapp approximately 10(20)) but reversible binding of iron. These bilobate molecules have two binding sites, one per lobe, each housing one Fe3+ and the synergistic CO3(2-) ion. Crystallographic studies of human lactoferrin and rabbit serum transferrin in their iron-bound forms have characterized their binding sites and protein structure. Physical studies show that a substantial conformational change accompanies iron binding and release. We have addressed this phenomenon through crystal structure analysis of human apolactoferrin at 2.8 A resolution. In this structure the N-lobe binding cleft is wide open, following a domain rotation of 53 degrees, mediated by the pivoting of two helices and flexing of two interdomain polypeptide strands. Remarkably, the C-lobe cleft is closed, but unliganded. These observations have implications for transferrin function and for binding proteins in general.

340 citations


Journal ArticleDOI
TL;DR: Fourier-transform infrared spectroscopy has been used together with direct electrochemistry of the protein at a modified metal electrode surface and the resulting reduced-minus-oxidized infrared difference spectra show the changes in the frequencies and intensities of molecular vibrations which arise from the redox-linked conformational change.
Abstract: We have developed a new technique for the study of redox-linked conformational changes in proteins, by the combination of two established techniques. Fourier-transform infrared spectroscopy has been used together with direct electrochemistry of the protein at a modified metal electrode surface. The technique has been evaluated with cytochrome c, because of its well-characterized electrochemistry and because the availability of X-ray crystallographic and NMR studies of both redox states of the protein provides a reference against which our data can be compared. In electrochemical control experiments, it was confirmed that the spectroelectrochemical cell design allows fast, accurate and reproducible control of the redox poise of the protein. The resulting reducedminus-oxidized infrared difference spectra show the changes in the frequencies and intensities of molecular vibrations which arise from the redox-linked conformational change. In contrast to the absolute infrared spectra of proteins, such difference spectra can be sufficiently straightforward to allow interpretation at the level of individual bonds. A complete interpretation of the spectra is beyond the scope of the present paper: however, on the basis of the data presented, we are able to suggest assignments for all except one of the major bands between 1500 cm−1 and 1800 cm−1.

257 citations


Journal ArticleDOI
TL;DR: The structure of Escherichia coli thymidylate synthase complexed with the substrate dUMP and an analogue of the cofactor methylenetetrahydrofolate was solved by multiple isomorphous replacement and refined at 1.97-A resolution to a residual of 18% for all data (16% for data greater than 2 sigma).
Abstract: The structure of Escherichia coli thymidylate synthase (TS) complexed with the substrate dUMP and an analogue of the cofactor methylenetetrahydrofolate was solved by multiple isomorphous replacement and refined at 1.97-A resolution to a residual of 18% for all data (16% for data greater than 2 sigma) for a highly constrained structure. All residues in the structure are clearly resolved and give a very high confidence in total correctness of the structure. The ternary complex directly suggests how methylation of dUMP takes place. C-6 of dUMP is covalently bound to gamma S of Cys-198(146) during catalysis, and the reactants are surrounded by specific hydrogen bonds and hydrophobic interactions from conserved residues. Comparison with the independently solved structure of unliganded TS reveals a large conformation change in the enzyme, which closes down to sequester the reactants and several highly ordered water molecules within a cavernous active center, away from bulk solvent. A second binding site for the quinazoline ring of the cofactor analogue was discovered by withholding addition of reducing agent during crystal storage. The chemical change in the protein is slight, and from difference density maps modification of sulfhydryls is not directly responsible for blockade of the primary site. The site, only partially overlapping with the primary site, is also surrounded by conserved residues and thus may play a functional role. The ligand-induced conformational change is not a domain shift but involves the segmental accommodation of several helices, beta-strands, and loops that move as units against the beta-sheet interface between monomers.

216 citations


Journal ArticleDOI
06 Apr 1990-Science
TL;DR: This reversible change in conformation, in which the shape of the protein changes from that best described by a prolate ellipsoid to a flexible structure best description by a Debye random coil, is physiologically relevant because a weak lysine binding site regulates the activation of plasminogen.
Abstract: Native human plasminogen has a radius of gyration of 39 angstroms. Upon occupation of a weak lysine binding site, the radius of gyration increases to 56 angstroms, an extremely large ligand-induced conformational change. There are no intermediate conformational states between the closed and open form. The conformational chang is not accompanied by a change in secondary structure, hence the closed conformation is formed by interaction between domains that is abolished upon conversion to the open form. This reversible change in conformation, in which the shape of the protein changes from that best described by a prolate ellipsoid to a flexible structure best described by a Debye random coil, is physiologically relevant because a weak lysine binding site regulates the activation of plasminogen.

191 citations


Journal ArticleDOI
TL;DR: In this article, heat-induced aggragation of egg white protein and conformational change of heat-denatured protein at a high pH value were investigated, and the flexibility, surface hydrophobicity, and changes in sulfhydryl groups were determined.
Abstract: The heat-induced aggragation of egg white protein and conformational change of heat-denatured protein at a high pH value were investigated. The flexibility, surface hydrophobicity, and changes in sulfhydryl groups were determined.

183 citations


Journal ArticleDOI
TL;DR: It was concluded that the O-linked sugar chain of hG-CSF contributes to the stability of the factor by suppressing polymerization and/or its conformational changes.

182 citations


Journal ArticleDOI
Itzhak Ohad1, Noam Adir1, H Koike1, D J Kyle1, Y. Inoue1 
TL;DR: The irreversible light-dependent modification of D1 may serve as the signal for its degradation and replacement by a newly synthesized molecule (turnover) and thus explain the rise in the intrinsic fluorescence level and reduction of electron flow to plastoquinone.

180 citations


Journal ArticleDOI
TL;DR: It is found that the respective HA molecules from the two strains assumed different conformational states after exposure to low pH, and the relationship between the conformation of HA and its fusogenic activity is discussed in the context of these experiments.
Abstract: Marked differences were observed between the H2 and H3 strains of influenza virus in their sensitivity to pretreatment at low pH. Whereas viral fusion and hemolysis mediated by influenza virus X:31 (H3 subtype) were inactivated by pretreatment of the virus at low pH, influenza virus A/Japan/305/57 (H2 subtype) retained those activities even after a 15-min incubation at pH 5.0 and 37 degrees C. Fusion with erythrocytes was measured by using the octadecylrhodamine-dequenching assay with both intact virions and CV-1 monkey kidney cells expressing hemagglutinin (HA) on the plasma membrane. To study the nature of the differences between the two strains, we examined the effects of low-pH treatment on the conformational change of HA by its susceptibility to protease digestion, exposure of the fusion peptide, and electron microscopy of unstained, frozen, hydrated virus. We found that the respective HA molecules from the two strains assumed different conformational states after exposure to low pH. The relationship between the conformation of HA and its fusogenic activity is discussed in the context of these experiments.

Journal ArticleDOI
TL;DR: For coronavirus MHV-A59, comparable conformational change of the spike glycoprotein E2 (S) and cell fusion occurred at a mildly alkaline condition, suggesting that coronav virus infection-penetration, like that of paramyxoviruses and lentiviruses, may occur at the plasma membrane, rather than within endocytic vesicles.
Abstract: We have obtained biochemical and electron microscopic evidence of conformational changes at pH 8.0 and 37 degrees C in the coronavirus spike glycoprotein E2 (S). The importance of these changes is reflected in the loss of virus infectivity, the aggregation of virions, and increased virus-induced cell fusion at the same pH. Coronavirus (MHV-A59) infectivity is exquisitely sensitive to pH. The virus was quite stable at pH 6.0 and 37 degrees C (half-life, approximately 24 h) but was rapidly and irreversibly inactivated by brief treatment at pH 8.0 and 37 degrees C (half-life, approximately 30 min). Virions treated at pH 8.0 and 37 degrees C formed clumps and large aggregates. With virions treated at pH 8.0 and 37 degrees C, the amino-terminal peptide E2N (or S1) was released from virions and the remaining peptide, E2C (S2), was aggregated. Viral spikes isolated from detergent-treated virions also aggregated at pH 8.0 and 37 degrees C. Loss of virus infectivity and E2 (S) aggregation at pH 8.0 and 37 degrees C were markedly enhanced in the presence of dithiothreitol. On the basis of the effects of dithiothreitol on the reactions of the peplomer, we propose that release of E2N (S1) and aggregation of E2C (S2) may be triggered by rearrangement of intramolecular disulfide bonds. The aggregation of virions and the isolated E2 (S) glycoprotein at pH 8.0 and 37 degrees C or following treatment with guanidine and urea at pH 6.0 and 37 degrees C indicate that an irreversible conformational change has been induced in the peplomer glycoprotein by these conditions. It is interesting that coronavirus-induced cell fusion also occurred under mildly alkaline conditions and at 37 degrees C. Some enveloped viruses, including influenza viruses and alphaviruses, show conformational changes of spike glycoproteins at a low pH, which correlates with fusion and penetration of those viruses in acidified endocytic vesicles. For coronavirus MHV-A59, comparable conformational change of the spike glycoprotein E2 (S) and cell fusion occurred at a mildly alkaline condition, suggesting that coronavirus infection-penetration, like that of paramyxoviruses and lentiviruses, may occur at the plasma membrane, rather than within endocytic vesicles.

Journal ArticleDOI
TL;DR: The structure of a complex of bacteriophage lambda Cro protein with a 17-base-pair operator with 3.9-A resolution confirms the general features of the model previously proposed for the interaction of Cro with DNA.
Abstract: The structure of a complex of bacteriophage lambda Cro protein with a 17-base-pair operator has been determined at 3.9-A resolution. Isomorphous derivatives obtained by the synthesis of site-specific iodinated DNA oligomers were of critical importance in solving the structure. The crystal structure contains three independent Cro-operator complexes that have very similar, although not necessarily identical, conformations. In the complex, the protein dimer undergoes a large conformational change relative to the crystal structure of the free protein. One monomer rotates by about 40 degrees relative to the other, this being accomplished primarily by a twisting of the two beta-sheet strands that connect one monomer with the other. In the complex, the DNA is bent by about 40 degrees into the shape of a boomerang but maintains essentially Watson-Crick B-form. In contrast to other known protein-DNA complexes, the DNA is not stacked end-to-end. The structure confirms the general features of the model previously proposed for the interaction of Cro with DNA.

Journal ArticleDOI
15 Jan 1990-Science
TL;DR: To investigate the relation between protein stability and the predicted stabilities of individual secondary structural elements, residue Pro86 in an alpha-helix in phage T4 lysozyme was replaced by ten different amino acids, which illustrated a general mechanism by which proteins can tolerate mutations.
Abstract: To investigate the relation between protein stability and the predicted stabilities of individual secondary structural elements, residue Pro86 in an alpha-helix in phage T4 lysozyme was replaced by ten different amino acids. The x-ray crystal structures of seven of the mutant lysozymes were determined at high resolution. In each case, replacement of the proline resulted in the formation of an extended alpha-helix. This involves a large conformational change in residues 81 to 83 and smaller shifts that extend 20 angstroms across the protein surface. Unexpectedly, all ten amino acid substitutions marginally reduce protein thermostability. This insensitivity of stability to the amino acid at position 86 is not simply explained by statistical and thermodynamic criteria for helical propensity. The observed conformational changes illustrate a general mechanism by which proteins can tolerate mutations.

Journal ArticleDOI
20 Jul 1990-Science
TL;DR: It is proposed that a symmetric two-site dimer similar in tertiary structure to the carboxyl-terminal domain of troponin-C forms from the assembly of two site III peptides in the Ca-bound form.
Abstract: The 70-residue carboxyl-terminal domain of the muscle contractile protein troponin-C contains two helix-loop-helix calcium (Ca)-binding sites that are related to each other by approximate twofold rotational symmetry. Hydrophobic residues from the helices and a short three residue beta sheet at the interface of the two sites act to stabilize the protein domain in the presence of Ca. A synthetic 34-residue peptide representing one of these sites (site III) has been synthesized and studied by H-1 nuclear magnetic resonance (NMR) spectroscopy. In solution this peptide undergoes a Ca-induced conformational change to form the helix-loop-helix Ca-binding motif. Two-dimensional nuclear Overhauser effect spectra have provided evidence for the formation of a beta sheet and interactions between several hydrophobic residues from opposing helices as found in troponin-C. It is proposed that a symmetric two-site dimer similar in tertiary structure to the carboxyl-terminal domain of troponin-C forms from the assembly of two site III peptides in the Ca-bound form.

Journal ArticleDOI
TL;DR: With a transforming mutant, [Asp12]-p21NRAS, there is no second phase of the fluorescence change after mantGTP or mantp[NH]ppG binding, which shows that an equivalent conformational change does not occur and thus the mutant may stay in a "GTP-like" conformation throughout the GTPase cycle.
Abstract: 2'(3')-O-(N-Methyl)anthraniloylguanosine 5'-triphosphate (mantGTP) is a fluorescent analogue of GTP that has similar properties to the physiological substrate in terms of its binding constant and the kinetics of its interactions with p21NRAS, the NRAS protooncogene product. There is a 3-fold increase in fluorescence intensity when mantGTP binds to p21NRAS. The rate constant for the cleavage of mantGTP complexed with the protein is similar to that of GTP, and cleavage is accompanied by a fluorescence intensity change in the wild-type protein complex. A two-phase fluorescence change also occurs when the nonhydrolyzable analogue 2'(3')-O-(N-methyl)anthraniloylguanosine 5'-[beta, gamma-imido]triphosphate (mantp[NH]ppG) binds to wild-type p21NRAS. The second phase occurs at the same rate as the second phase observed after mantGTP binding. Thus this second phase is probably a conformation change of the p21NRAS nucleotiside triphosphate complex and that the change controls the rate of GTP hydrolysis on the protein. With a transforming mutant, [Asp12]-p21NRAS, there is no second phase of the fluorescence change after mantGTP or mantp[NH]ppG binding, even though mantGTP is hydrolyzed. This shows that an equivalent conformational change does not occur and thus the mutant may stay in a "GTP-like" conformation throughout the GTPase cycle. These results are discussed in terms of the proposed role of p21NRAS in signal transduction and the transforming properties of the mutant.

Journal ArticleDOI
TL;DR: This is the first demonstration that TG-mediated post-translational modification of an enzyme (e.g. PLA2) causes a striking increase in the catalytic activity of the enzyme.

Journal ArticleDOI
TL;DR: The conformational change taking place in myoglobin concomitantly with the observed geometrical change at the heme-His(F8) linkage upon oxygenation is studied by normal mode analysis, which is based on the quadratic approximation of the conformational energy function.

Journal ArticleDOI
TL;DR: Two different conformations of the enzyme-substrate complex have now been directly demonstrated by an intrinsic fluorescence enhancement in glucokinase upon addition of glucose, with the conformational change specific for glucose responsible for the generation of the kinetic cooperativity of this monomeric enzyme.

ComponentDOI
TL;DR: The lack of large conformational changes, the observation of a possible isocitrate binding site close to serine 113, and the demonstration that the phosphorylated enzyme is unable to bind isocItrate suggest that this enzyme is inactivated by a direct electrostatic interaction between the substrate and the serine phosphate.

Journal ArticleDOI
TL;DR: P62, the precursor to E1 and E3, was shown to undergo a pH-dependent conformational change similar to that of E2 and was sensitive to acid very soon after biosynthesis and a posttranslational maturation event was required for the conversion of E1 to the pH-sensitive form.
Abstract: The Semliki Forest virus spike protein has a potent membrane fusion activity which is activated in vivo by the low pH of endocytic vacuoles. The spike protein is composed of two transmembrane subunits, E1 and E2, plus E3, a peripheral polypeptide. Acid-induced conformational changes in the E1 or E2 subunits were analyzed by using monoclonal antibodies specific for the acid-treated spike protein. E1 and E2 reacted with the antibodies after treatment of wild-type or mutant virus at the pH of fusion. The E1 conformational change resembled fusion in its requirement for both low pH and cholesterol. Pulse-chase analysis and intracellular pH treatment were then used to determine the ability of the newly synthesized spike to undergo acid-induced conformational changes. p62, the precursor to E2 and E3, was shown to undergo a pH-dependent conformational change similar to that of E2 and was sensitive to acid very soon after biosynthesis. In contrast, a posttranslational maturation event was required for the conversion of E1 to the pH-sensitive form. E1 maturation occurred fairly late in the exocytic pathway, after the virus spike had passed the medial Golgi but before incorporation of the spike into a new virus particle.

Journal ArticleDOI
TL;DR: Results suggest that Thr181, Gly182, and Glu183 play essential roles in the conformational change between E1P and E2P.

Journal ArticleDOI
TL;DR: Calcium binding parameters for SP-A are estimated from binding data obtained by equilibrium dialysis and gel permeation chromatography and suggest that eachSP-A monomer binds two to three calcium ions in conditions chosen as similar to those found in the alveolar lumen.
Abstract: SP-A is a lung-specific pulmonary surfactant-associated protein containing a calcium-dependent carbohydrate recognition domain and collagen-like sequence. The protein is a major component of the extracellular form of surfactant known as tubular myelin. SP-A is thought to influence the surface properties of surfactant lipids and regulate the turnover of extracellular surfactant through interaction with a specific cell-surface receptor. These properties of SP-A are dependent on the presence of calcium. We have estimated calcium binding parameters for SP-A from binding data obtained by equilibrium dialysis and gel permeation chromatography. Our results suggest that each SP-A monomer binds two to three calcium ions in conditions chosen as similar to those found in the alveolar lumen. The binding data are best fit to a model incorporating two calcium binding sites with different affinities. Studies with a fragment of SP-A generated by limited proteolysis suggest the higher affinity site for calcium is located in the noncollagenous carboxy-terminal end of SP-A. This region of SP-A contains a carbohydrate recognition domain homologous to other C-type lectins. The binding of calcium to this region of SP-A causes a conformational change as assessed by a small change in the intrinsic fluorescence spectrum and a marked change in the susceptibility to proteolysis. At physiological calcium concentrations, intact SP-A aggregates in a reversible fashion, a property that may be relevant to the formation of tubular myelin.

Journal ArticleDOI
01 Sep 1990-Planta
TL;DR: The monoclonal antibody MAC 256 can, therefore, bind undenatured, native ABP and the ability of a range of auxins and related compounds to displace MAC 256 correlates with the known structure-activity relationships of these compounds in vivo and in binding assays.
Abstract: The monoclonal antibody MAC 256 precipitates specifically the auxin-binding protein (ABP) of maize membranes. Auxin-binding activity was recovered from the immunoprecipitate and MAC 256 can, therefore, bind undenatured, native ABP. A sandwich enzyme-linked immunosorbent assay was used to present native ABP to MAC 256 and under these conditions auxins inhibit antibody binding. Millimolar naphthalene-1-acetic acid completely blocks MAC 256 binding and the characteristics of monoclonal antibody MAC 259 are similar. The ability of a range of auxins and related compounds to displace MAC 256 correlates with the known structure-activity relationships of these compounds in vivo and in binding assays. The results are interpreted in terms of an auxin-induced conformational change in ABP, auxin binding leading to a change in, or concealment of, the epitope of the antibody. The epitope for MAC 256 and 259 lies close to the carboxy terminus of the protein, implying that the part of ABP containing the sequence of amino acids responsible for retention within the endoplasmic reticulum is conformationally active.

Journal ArticleDOI
TL;DR: In this paper, the effect of elevated hydrostatic pressure on the secondary structure of poly(L-lysine) was studied using Fourier transform ir spectroscopy, and it was shown that the polypeptidic conformations induced by elevated HOG are reversible, but that an apparent irreversibility can result from kinetic factors in the case of conformational changes involving extensive rearrangements.
Abstract: The effect of elevated hydrostatic pressure on the secondary structure of poly(L-lysine) was studied using Fourier transform ir spectroscopy. According to changes observed in the amide I band, both the β-sheet and the unordered polypeptide undergo a reversible, pressure-induced conformational change to α-helix. The conversion occurs at a much higher pressure from the unordered conformer (∼ 9 kbar) than from the β-sheets (∼ 2 kbar). The structural changes were found to be slower at pH > 11, especially at the highest concentration investigated (10 wt%), reflecting the fact that extensive hydrogen-bond networks have to reorganize. This study shows that alterations of polypeptidic conformations induced by elevated hydrostatic pressure are reversible, but that an apparent irreversibility can result from kinetic factors in the case of conformational changes involving extensive rearrangements. The present results also show that the strength of the hydrogen bonds between the backbone amide groups is not the only factor that determines the closest packing of the polypeptide molecules.

Journal ArticleDOI
TL;DR: The present work is essential for studies which seek to analyze, in any detailed fashion, the conformational transitions in the heme protein which take place in response to changes in the lipid environment.
Abstract: Resonance Raman spectra have been recorded from ferri-cytochromec bound to phospholipid vesicles composed of dimyristoyl phosphatidylglycerol (DMPG), dioleoyl phosphatidylglycerol (DOPG) or dioleoyl phosphatidylglycerol-dioleoyl phasphatidylcholine (DOPG-OPC) (70 : 30 mole/mole). Lipid binding induces very significant conformational changes in the protein molecule. The resonance Raman spectra differ in their content of bands originating from two different conformational species, I and II, of the protein, and from two different spin and coordination states of the heme in conformation II. Data of sufficiently high precision were obtained that the spectra of the individual species could be quantitated by a constraint interative fitting routine using single Lorentzian profiles. In the high frequency, or marker band region (1200 to 1700 cm−1), the frequencies, half widths and relative intensities of the individual bands could be estimated from previous surface enhanced resonance Raman measurements on cytochromec adsorbed on a silver electrode. These were then further optimized to yield both the spectral parameters and relative contents of the different species. In the low frequency, or finger-print, region (200 to 800 cm−1), the spectral parameters of the individual species were obtained from difference spectra derived by sequential subtraction between the spectra of ferri-cytochromec in the three different lipid systems, using the relative proportions of the species derived from the marker band region. These parameters were then subsequently refined by iterative optimization. The optimized spectral parameters in both frequency regions for the six-coordinated low spin states I and II, and for the five-coordinated high spin state II are presented. The proportion of state II, in which hence the heme crevice assumes an open structure, and of the five-coordinated high spin configuration, is found to increase on binding ferri cytochromec to negatively charged lipid vesicles. The extent of this conformational change increases in the order: DOPG-DOPC


Journal ArticleDOI
TL;DR: In this paper, the distance between the membrane surface and the active site of membrane-bound meizothrombin, a derivative of prothrombin was determined directly using fluorescence energy transfer, assuming k 2 = 2/3, the dependence of the efficiency of energy transfer upon the acceptor density showed that the distance of closest approach between the active sites probe and the bilayer surface was 71 +/- 2 A.

Journal ArticleDOI
TL;DR: The conformation of cyclosporin A was investigated in different environments and using polar solvents induced conformational changes in the backbone as well as the side chains.

Journal ArticleDOI
TL;DR: Different sedimentation velocity experiments involving measurements of the changes caused by the binding of the bisubstrate analogue N-(phosphonacetyl)-L-aspartate demonstrated that the sedimentation coefficient of the mutant enzyme was intermediate between that observed for the T and R states of wild-type ATCase, indicating that the [T/R] ratio in phosphate buffer at pH 7.0 is reduced.
Abstract: The sigmoidal dependence of activity on substrate concentration exhibited by the regulatory enzyme aspartate transcarbamoylase (ATCase) of Escherichia coli is generally attributed to a ligand-promoted change in the quaternary structure of the enzyme. Although a global conformational change in ATCase upon the binding of ligands to some of the six active sites is well documented, a corresponding alteration in the structure of the wild-type enzyme upon the addition of the inhibitor, CTP, or the activator, ATP, has not been detected. Such evidence is essential for testing whether heterotropic, as well as homotropic, effects can be accounted for quantitatively in terms of coupled equilibria involving a conformational change in the enzyme and preferential binding of ligands to one conformation or the other. This evidence has now been obtained with a mutant form of ATCase in which Lys 143 in the regulatory chain was replaced by Ala, thereby perturbing interactions at the interface between the regulatory and catalytic chains in the enzyme and destabilizing the low-activity, compact (T) conformation relative to the high-activity, swollen (R) state. Difference sedimentation velocity experiments involving measurements of the changes caused by the binding of the bisubstrate analogue N-(phosphonacetyl)-L-aspartate demonstrated that the sedimentation coefficient of the mutant enzyme was intermediate between that observed for the T and R states of wild-type ATCase. We interpret the results as indicating that the [T]/[R] ratio in phosphate buffer at pH 7.0 is reduced from about 2 X 10(2) for the wild-type enzyme to 2.7 for r143Ala ATCase.(ABSTRACT TRUNCATED AT 250 WORDS)