scispace - formally typeset
Search or ask a question
Topic

Conjugate prior

About: Conjugate prior is a research topic. Over the lifetime, 1528 publications have been published within this topic receiving 51253 citations.


Papers
More filters
Book
01 Jun 1970
TL;DR: In this article, the authors present a survey of probability theory in the context of sample spaces and decision problems, including the following: 1.1 Experiments and Sample Spaces, and Probability 2.2.3 Random Variables, Random Vectors and Distributions Functions.
Abstract: Foreword.Preface.PART ONE. SURVEY OF PROBABILITY THEORY.Chapter 1. Introduction.Chapter 2. Experiments, Sample Spaces, and Probability.2.1 Experiments and Sample Spaces.2.2 Set Theory.2.3 Events and Probability.2.4 Conditional Probability.2.5 Binomial Coefficients.Exercises.Chapter 3. Random Variables, Random Vectors, and Distributions Functions.3.1 Random Variables and Their Distributions.3.2 Multivariate Distributions.3.3 Sums and Integrals.3.4 Marginal Distributions and Independence.3.5 Vectors and Matrices.3.6 Expectations, Moments, and Characteristic Functions.3.7 Transformations of Random Variables.3.8 Conditional Distributions.Exercises.Chapter 4. Some Special Univariate Distributions.4.1 Introduction.4.2 The Bernoulli Distributions.4.3 The Binomial Distribution.4.4 The Poisson Distribution.4.5 The Negative Binomial Distribution.4.6 The Hypergeometric Distribution.4.7 The Normal Distribution.4.8 The Gamma Distribution.4.9 The Beta Distribution.4.10 The Uniform Distribution.4.11 The Pareto Distribution.4.12 The t Distribution.4.13 The F Distribution.Exercises.Chapter 5. Some Special Multivariate Distributions.5.1 Introduction.5.2 The Multinomial Distribution.5.3 The Dirichlet Distribution.5.4 The Multivariate Normal Distribution.5.5 The Wishart Distribution.5.6 The Multivariate t Distribution.5.7 The Bilateral Bivariate Pareto Distribution.Exercises.PART TWO. SUBJECTIVE PROBABILITY AND UTILITY.Chapter 6. Subjective Probability.6.1 Introduction.6.2 Relative Likelihood.6.3 The Auxiliary Experiment.6.4 Construction of the Probability Distribution.6.5 Verification of the Properties of a Probability Distribution.6.6 Conditional Likelihoods.Exercises.Chapter 7. Utility.7.1 Preferences Among Rewards.7.2 Preferences Among Probability Distributions.7.3 The Definitions of a Utility Function.7.4 Some Properties of Utility Functions.7.5 The Utility of Monetary Rewards.7.6 Convex and Concave Utility Functions.7.7 The Anxiomatic Development of Utility.7.8 Construction of the Utility Function.7.9 Verification of the Properties of a Utility Function.7.10 Extension of the Properties of a Utility Function to the Class ?E.Exercises.PART THREE. STATISTICAL DECISION PROBLEMS.Chapter 8. Decision Problems.8.1 Elements of a Decision Problem.8.2 Bayes Risk and Bayes Decisions.8.3 Nonnegative Loss Functions.8.4 Concavity of the Bayes Risk.8.5 Randomization and Mixed Decisions.8.6 Convex Sets.8.7 Decision Problems in Which ~2 and D Are Finite.8.8 Decision Problems with Observations.8.9 Construction of Bayes Decision Functions.8.10 The Cost of Observation.8.11 Statistical Decision Problems in Which Both ? and D contains Two Points.8.12 Computation of the Posterior Distribution When the Observations Are Made in More Than One Stage.Exercises.Chapter 9. Conjugate Prior Distributions.9.1 Sufficient Statistics.9.2 Conjugate Families of Distributions.9.3 Construction of the Conjugate Family.9.4 Conjugate Families for Samples from Various Standard Distributions.9.5 Conjugate Families for Samples from a Normal Distribution.9.6 Sampling from a Normal Distribution with Unknown Mean and Unknown Precision.9.7 Sampling from a Uniform Distribution.9.8 A Conjugate Family for Multinomial Observations.9.9 Conjugate Families for Samples from a Multivariate Normal Distribution.9.10 Multivariate Normal Distributions with Unknown Mean Vector and Unknown Precision matrix.9.11 The Marginal Distribution of the Mean Vector.9.12 The Distribution of a Correlation.9.13 Precision Matrices Having an Unknown Factor.Exercises.Chapter 10. Limiting Posterior Distributions.10.1 Improper Prior Distributions.10.2 Improper Prior Distributions for Samples from a Normal Distribution.10.3 Improper Prior Distributions for Samples from a Multivariate Normal Distribution.10.4 Precise Measurement.10.5 Convergence of Posterior Distributions.10.6 Supercontinuity.10.7 Solutions of the Likelihood Equation.10.8 Convergence of Supercontinuous Functions.10.9 Limiting Properties of the Likelihood Function.10.10 Normal Approximation to the Posterior Distribution.10.11 Approximation for Vector Parameters.10.12 Posterior Ratios.Exercises.Chapter 11. Estimation, Testing Hypotheses, and linear Statistical Models.11.1 Estimation.11.2 Quadratic Loss.11.3 Loss Proportional to the Absolute Value of the Error.11.4 Estimation of a Vector.11.5 Problems of Testing Hypotheses.11.6 Testing a Simple Hypothesis About the Mean of a Normal Distribution.11.7 Testing Hypotheses about the Mean of a Normal Distribution.11.8 Deciding Whether a Parameter Is Smaller or larger Than a Specific Value.11.9 Deciding Whether the Mean of a Normal Distribution Is Smaller or larger Than a Specific Value.11.10 Linear Models.11.11 Testing Hypotheses in Linear Models.11.12 Investigating the Hypothesis That Certain Regression Coefficients Vanish.11.13 One-Way Analysis of Variance.Exercises.PART FOUR. SEQUENTIAL DECISIONS.Chapter 12. Sequential Sampling.12.1 Gains from Sequential Sampling.12.2 Sequential Decision Procedures.12.3 The Risk of a Sequential Decision Procedure.12.4 Backward Induction.12.5 Optimal Bounded Sequential Decision procedures.12.6 Illustrative Examples.12.7 Unbounded Sequential Decision Procedures.12.8 Regular Sequential Decision Procedures.12.9 Existence of an Optimal Procedure.12.10 Approximating an Optimal Procedure by Bounded Procedures.12.11 Regions for Continuing or Terminating Sampling.12.12 The Functional Equation.12.13 Approximations and Bounds for the Bayes Risk.12.14 The Sequential Probability-ratio Test.12.15 Characteristics of Sequential Probability-ratio Tests.12.16 Approximating the Expected Number of Observations.Exercises.Chapter 13. Optimal Stopping.13.1 Introduction.13.2 The Statistician's Reward.13.3 Choice of the Utility Function.13.4 Sampling Without Recall.13.5 Further Problems of Sampling with Recall and Sampling without Recall.13.6 Sampling without Recall from a Normal Distribution with Unknown Mean.13.7 Sampling with Recall from a Normal Distribution with Unknown Mean.13.8 Existence of Optimal Stopping Rules.13.9 Existence of Optimal Stopping Rules for Problems of Sampling with Recall and Sampling without Recall.13.10 Martingales.13.11 Stopping Rules for Martingales.13.12 Uniformly Integrable Sequences of Random Variables.13.13 Martingales Formed from Sums and Products of Random Variables.13.14 Regular Supermartingales.13.15 Supermartingales and General Problems of Optimal Stopping.13.16 Markov Processes.13.17 Stationary Stopping Rules for Markov Processes.13.18 Entrance-fee Problems.13.19 The Functional Equation for a Markov Process.Exercises.Chapter 14. Sequential Choice of Experiments.14.1 Introduction.14.2 Markovian Decision Processes with a Finite Number of Stages.14.3 Markovian Decision Processes with an Infinite Number of Stages.14.4 Some Betting Problems.14.5 Two-armed-bandit Problems.14.6 Two-armed-bandit Problems When the Value of One Parameter Is Known.14.7 Two-armed-bandit Problems When the Parameters Are Dependent.14.8 Inventory Problems.14.9 Inventory Problems with an Infinite Number of Stages.14.10 Control Problems.14.11 Optimal Control When the Process Cannot Be Observed without Error.14.12 Multidimensional Control Problems.14.13 Control Problems with Actuation Errors.14.14 Search Problems.14.15 Search Problems with Equal Costs.14.16 Uncertainty Functions and Statistical Decision Problems.14.17 Sufficient Experiments.14.18 Examples of Sufficient Experiments.Exercises.References.Supplementary Bibliography.Name Index.Subject Index.

4,287 citations

Journal ArticleDOI
TL;DR: In this paper, a folded-noncentral-$t$ family of conditionally conjugate priors for hierarchical standard deviation parameters is proposed, and weakly informative priors in this family are considered.
Abstract: Various noninformative prior distributions have been suggested for scale parameters in hierarchical models. We construct a new folded-noncentral-$t$ family of conditionally conjugate priors for hierarchical standard deviation parameters, and then consider noninformative and weakly informative priors in this family. We use an example to illustrate serious problems with the inverse-gamma family of "noninformative" prior distributions. We suggest instead to use a uniform prior on the hierarchical standard deviation, using the half-$t$ family when the number of groups is small and in other settings where a weakly informative prior is desired. We also illustrate the use of the half-$t$ family for hierarchical modeling of multiple variance parameters such as arise in the analysis of variance.

3,012 citations

Posted Content
TL;DR: In this paper, a folded-noncentral-t family of conditionally conjugate priors for hierarchical standard deviation pa- rameters is proposed, and weakly informative priors in this family are considered.
Abstract: Various noninformative prior distributions have been suggested for scale parameters in hierarchical models. We construct a new folded-noncentral-t family of conditionally conjugate priors for hierarchical standard deviation pa- rameters, and then consider noninformative and weakly informative priors in this family. We use an example to illustrate serious problems with the inverse-gamma family of "noninformative" prior distributions. We suggest instead to use a uni- form prior on the hierarchical standard deviation, using the half-t family when the number of groups is small and in other settings where a weakly informative prior is desired. We also illustrate the use of the half-t family for hierarchical modeling of multiple variance parameters such as arise in the analysis of variance.

1,535 citations

Journal Article
TL;DR: The authors compare various hierarchical mixture prior formulations of variable selection uncertainty in normal linear regression models, including the nonconjugate SSVS formulation of George and McCulloch (1993), as well as conjugate formulations which allow for analytical simplification.
Abstract: This paper describes and compares various hierarchical mixture prior formulations of variable selection uncertainty in normal linear regression models. These include the nonconjugate SSVS formulation of George and McCulloch (1993), as well as conjugate formulations which allow for analytical simplification. Hyperpa- rameter settings which base selection on practical significance, and the implications of using mixtures with point priors are discussed. Computational methods for pos- terior evaluation and exploration are considered. Rapid updating methods are seen to provide feasible methods for exhaustive evaluation using Gray Code sequencing in moderately sized problems, and fast Markov Chain Monte Carlo exploration in large problems. Estimation of normalization constants is seen to provide improved posterior estimates of individual model probabilities and the total visited probabil- ity. Various procedures are illustrated on simulated sample problems and on a real problem concerning the construction of financial index tracking portfolios.

1,291 citations

Proceedings Article
27 Nov 1995
TL;DR: This paper investigates the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis for fixed values of hyperparameters to be carried out exactly using matrix operations.
Abstract: The Bayesian analysis of neural networks is difficult because a simple prior over weights implies a complex prior distribution over functions. In this paper we investigate the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis for fixed values of hyperparameters to be carried out exactly using matrix operations. Two methods, using optimization and averaging (via Hybrid Monte Carlo) over hyperparameters have been tested on a number of challenging problems and have produced excellent results.

1,225 citations


Network Information
Related Topics (5)
Estimator
97.3K papers, 2.6M citations
86% related
Linear model
19K papers, 1M citations
85% related
Inference
36.8K papers, 1.3M citations
82% related
Statistical hypothesis testing
19.5K papers, 1M citations
81% related
Markov chain
51.9K papers, 1.3M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202319
202228
202157
202050
201942
201843