scispace - formally typeset
Search or ask a question
Topic

Consistent histories

About: Consistent histories is a research topic. Over the lifetime, 1826 publications have been published within this topic receiving 80760 citations. The topic is also known as: consistent history & decoherent histories.


Papers
More filters
Journal ArticleDOI
TL;DR: Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that one is led to conclude that the description of reality as given by a wave function is not complete.
Abstract: In a complete theory there is an element corresponding to each element of reality. A sufficient condition for the reality of a physical quantity is the possibility of predicting it with certainty, without disturbing the system. In quantum mechanics in the case of two physical quantities described by non-commuting operators, the knowledge of one precludes the knowledge of the other. Then either (1) the description of reality given by the wave function in quantum mechanics is not complete or (2) these two quantities cannot have simultaneous reality. Consideration of the problem of making predictions concerning a system on the basis of measurements made on another system that had previously interacted with it leads to the result that if (1) is false then (2) is also false. One is thus led to conclude that the description of reality as given by a wave function is not complete.

13,778 citations

Journal ArticleDOI
01 Nov 1964-Physics
TL;DR: In this article, it was shown that even without such a separability or locality requirement, no hidden variable interpretation of quantum mechanics is possible and that such an interpretation has a grossly nonlocal structure, which is characteristic of any such theory which reproduces exactly the quantum mechanical predictions.
Abstract: THE paradox of Einstein, Podolsky and Rosen [1] was advanced as an argument that quantum mechanics could not be a complete theory but should be supplemented by additional variables These additional variables were to restore to the theory causality and locality [2] In this note that idea will be formulated mathematically and shown to be incompatible with the statistical predictions of quantum mechanics It is the requirement of locality, or more precisely that the result of a measurement on one system be unaffected by operations on a distant system with which it has interacted in the past, that creates the essential difficulty There have been attempts [3] to show that even without such a separability or locality requirement no "hidden variable" interpretation of quantum mechanics is possible These attempts have been examined elsewhere [4] and found wanting Moreover, a hidden variable interpretation of elementary quantum theory [5] has been explicitly constructed That particular interpretation has indeed a grossly nonlocal structure This is characteristic, according to the result to be proved here, of any such theory which reproduces exactly the quantum mechanical predictions

10,253 citations

Journal ArticleDOI
TL;DR: In this paper, the theory of measurements is to be understood from the point of view of a physical interpretation of the quantum theory in terms of hidden variables developed in a previous paper.
Abstract: In this paper, we shall show how the theory of measurements is to be understood from the point of view of a physical interpretation of the quantum theory in terms of hidden variables developed in a previous paper. We find that in principle, these \"hidden\" variables determine the precise results of each individual measurement process. In practice, however, in measurements that we now know how to carry out, the observing apparatus disturbs the observed system in an unpredictable and uncontrollable way, so that the uncertainty principle is obtained as a practical limitation on the possible precision of measurements. This limitation is not, however, inherent in the conceptual structure of our interpretation. We shall see, for example, that simultaneous measurements of position and momentum having unlimited precision would in principle be possible if, as suggested in the previous paper, the mathematical formulation of the quantum theory needs to be modined at very short distances in certain ways that are consistent with our interpretation but not with the usual interpretation. We give a simple explanation of the origin of quantum-mechanical correlations of distant objects in the hypothetical experiment of Einstein, Podolsky, and Rosen, which was suggested by these authors as a criticism of the usual interpretation. Finally, we show that von Neumann's proof that quantum theory is not consistent with hidden variables does not apply to our interpretation, because the hidden variables contemplated here depend both on the state of the measuring apparatus and the observed system and therefore go beyond certain of von 1umann's assumptions. In two appendixes, we treat the problem oi the electromagnetic field in our interpretation and answer certain additional objections which have arisen in the attempt to give a precise description for an individual system at the quantum level.

5,110 citations

Journal ArticleDOI
01 Jan 1949
TL;DR: In this article, an attempt is made to interpret quantum mechanics as a statistical theory, or more exactly as a form of non-deterministic statistical dynamics, which may hence be considered as an interpretation of quantum kinematics.
Abstract: An attempt is made to interpret quantum mechanics as a statistical theory, or more exactly as a form of non-deterministic statistical dynamics. The paper falls into three parts. In the first, the distribution functions of the complete set of dynamical variables specifying a mechanical system (phase-space distributions), which are fundamental in any form of statistical dynamics, are expressed in terms of the wave vectors of quantum theory. This is shown to be equivalent to specifying a theory of functions of non-commuting operators, and may hence be considered as an interpretation of quantum kinematics. In the second part, the laws governing the transformation with time of these phase-space distributions are derived from the equations of motion of quantum dynamics and found to be of the required form for a dynamical stochastic process. It is shown that these phase-space transformation equations can be used as an alternative to the Schrodinger equation in the solution of quantum mechanical problems, such as the evolution with time of wave packets, collision problems and the calculation of transition probabilities in perturbed systems; an approximation method is derived for this purpose. The third part, quantum statistics, deals with the phase-space distribution of members of large assemblies, with a view to applications of quantum mechanics to kinetic theories of matter. Finally, the limitations of the theory, its uniqueness and the possibilities of experimental verification are discussed.

2,905 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a reformulation of quantum theory in a form believed suitable for application to general relativity, from which the conventional interpretation of quantum mechanics can be deduced.
Abstract: The task of quantizing general relativity raises serious questions about the meaning of the present formulation and interpretation of quantum mechanics when applied to so fundamental a structure as the space-time geometry itself. This paper seeks to clarify the foundations of quantum mechanics. It presents a reformulation of quantum theory in a form believed suitable for application to general relativity. The aim is not to deny or contradict the conventional formulation of quantum theory, which has demonstrated its usefulness in an overwhelming variety of problems, but rather to supply a new, more general and complete formulation, from which the conventional interpretation can be deduced. The relationship of this new formulation to the older formulation is therefore that of a metatheory to a theory, that is, it is an underlying theory in which the nature and consistency, as well as the realm of applicability, of the older theory can be investigated and clarified.

2,612 citations


Network Information
Related Topics (5)
Open quantum system
20.4K papers, 924.6K citations
90% related
Quantum entanglement
39.5K papers, 1M citations
86% related
Quantum
60K papers, 1.2M citations
85% related
Quantum information
22.7K papers, 911.3K citations
85% related
Quantum field theory
24.6K papers, 749.9K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202318
202221
202110
20206
20196
20189