scispace - formally typeset


Constant (mathematics)

About: Constant (mathematics) is a(n) research topic. Over the lifetime, 30206 publication(s) have been published within this topic receiving 452957 citation(s).

More filters
Journal ArticleDOI
Abstract: In molecular dynamics (MD) simulations the need often arises to maintain such parameters as temperature or pressure rather than energy and volume, or to impose gradients for studying transport properties in nonequilibrium MD A method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling The method is easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints The influence of coupling time constants on dynamical variables is evaluated A leap‐frog algorithm is presented for the general case involving constraints with coupling to both a constant temperature and a constant pressure bath

22,197 citations

Journal ArticleDOI
Abstract: Let M(x) denote the expected value at level x of the response to a certain experiment. M(x) is assumed to be a monotone function of x but is unknown to the experimenter, and it is desired to find the solution x = θ of the equation M(x) = α, where a is a given constant. We give a method for making successive experiments at levels x1, x2, ··· in such a way that xn will tend to θ in probability.

7,621 citations

Journal ArticleDOI
Abstract: Measurements of the Hall voltage of a two-dimensional electron gas, realized with a silicon metal-oxide-semiconductor field-effect transistor, show that the Hall resistance at particular, experimentally well-defined surface carrier concentrations has fixed values which depend only on the fine-structure constant and speed of light, and is insensitive to the geometry of the device. Preliminary data are reported.

4,931 citations

Journal ArticleDOI
Abstract: In the molecular dynamics simulation method for fluids, the equations of motion for a collection of particles in a fixed volume are solved numerically. The energy, volume, and number of particles are constant for a particular simulation, and it is assumed that time averages of properties of the simulated fluid are equal to microcanonical ensemble averages of the same properties. In some situations, it is desirable to perform simulations of a fluid for particular values of temperature and/or pressure or under conditions in which the energy and volume of the fluid can fluctuate. This paper proposes and discusses three methods for performing molecular dynamics simulations under conditions of constant temperature and/or pressure, rather than constant energy and volume. For these three methods, it is shown that time averages of properties of the simulated fluid are equal to averages over the isoenthalpic–isobaric, canonical, and isothermal–isobaric ensembles. Each method is a way of describing the dynamics of a certain number of particles in a volume element of a fluid while taking into account the influence of surrounding particles in changing the energy and/or density of the simulated volume element. The influence of the surroundings is taken into account without introducing unwanted surface effects. Examples of situations where these methods may be useful are discussed.

4,564 citations

Journal ArticleDOI
Abstract: A method for solving the initial-value problem of the Korteweg-deVries equation is presented which is applicable to initial data that approach a constant sufficiently rapidly as $|x|\ensuremath{\rightarrow}\ensuremath{\infty}$. The method can be used to predict exactly the "solitons," or solitary waves, which emerge from arbitrary initial conditions. Solutions that describe any finite number of solitons in interaction can be expressed in closed form.

3,602 citations

No. of papers in the topic in previous years