scispace - formally typeset
Search or ask a question
Topic

Constitutive equation

About: Constitutive equation is a research topic. Over the lifetime, 24995 publications have been published within this topic receiving 665195 citations. The topic is also known as: Constitutive Equation of Materials.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a universal constitutive equation between the heat flux vector and the temperature gradient is proposed to cover the fundamental behaviors of diffusion, wave, phonon-electron interactions, and pure phonon scattering.
Abstract: A universal constitutive equation between the heat flux vector and the temperature gradient is proposed to cover the fundamental behaviors of diffusion (macroscopic in both space and time), wave (macroscopic in space but microscopic in time), phonon-electron interactions (microscopic in both space and time), and pure phonon scattering The model is generalized from the dual-phase-lag concept accounting for the laging behavior in the high-rate response While the phase lag of the heat flux captures the small-scale response in time, the phase lag of the temperature gradient captures the small-scale response in space The universal form of the energy equation facilitates identifications of the physical parameters governing the transition from one mechanism (such as diffusion or wave) to another (the phonon-electron interaction)

1,435 citations

Journal ArticleDOI
08 Jun 2006-Nature
TL;DR: The results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.
Abstract: A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

1,429 citations

01 Jan 1993
TL;DR: In this paper, a one-dimensional constitutive model for the thermomechanical behavior of shape memory alloys is developed based on previous work by Liang and Tanaka, where an internal variable approach is used to derive a comprehensive constitutive law for shape memory alloy materials from first principles without the assumption of constant material functions.
Abstract: A one-dimensional constitutive model for the thermomechanical behavior of shape memory alloys is developed based on previous work by Liang and Tanaka. An internal variable approach is used to derive a comprehensive constitutive law for shape memory alloy materials from first principles without the assumption of constant material functions. This constitutive law is of such a form that it is well suited to further practical engineering applications and calculations. A separation of the martensite fraction internal variable into temperature-induced and stress-induced parts is presented and justified which then allows the derived constitutive law to accurately represent both the pseudoelastic and shape memory effects at all temperatures. Several numerical examples are given which illustrate the ability of the constitutive law to capture the unique thermomechanical behavior of shape memory alloys due to their internal phase transformations with stress and temperature.

1,350 citations

Journal ArticleDOI
TL;DR: In this article, the internal inhomogeneities of stress and strain in an arbitrarily deformed aggregate of elasto-plastic crystals are evaluated theoretically using a tensor constitutive law of a general kind.
Abstract: T he internal inhomogeneities of stress and strain in an arbitrarily deformed aggregate of elasto-plastic crystals are evaluated theoretically. A tensor constitutive law of a general kind is assumed for the individual crystals. The implied mechanical properties of the aggregate as a whole are estimated by means of a self-consistent model akin to one used by H ershey (1954), K roner (1958, 1961) and B udiansky and W u (1962), but differing in significant respects.

1,347 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
91% related
Finite element method
178.6K papers, 3M citations
91% related
Stress (mechanics)
69.5K papers, 1.1M citations
88% related
Ultimate tensile strength
129.2K papers, 2.1M citations
86% related
Numerical analysis
52.2K papers, 1.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023848
20221,720
2021915
2020873
2019880
2018813