scispace - formally typeset
Search or ask a question
Topic

Constrained-layer damping

About: Constrained-layer damping is a research topic. Over the lifetime, 795 publications have been published within this topic receiving 15758 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a finite element (FE) model was developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG laminated composite shell under a thermal environment.
Abstract: This paper addresses the active control of geometrically nonlinear vibrations of doubly curved functionally graded (FG) laminated composite shells integrated with a patch of active constrained layer damping (ACLD) treatment under the thermal environment. Vertically/obliquely reinforced 1-3 piezoelectric composite (PZC) and active fiber composite (AFC) are used as the materials of the constraining layer of the ACLD treatment. Each layer of the substrate FG laminated composite shell is made of fiber-reinforced composite material in which the fibers are longitudinally aligned in the plane parallel to the top or bottom surface of the layer and the layer is assumed to be graded in the thickness direction by way of varying the fiber orientation angle across its thickness according to a power law. The novelty of the present work is that, unlike the traditional laminated composite shells, the FG laminated composite shells are constructed in such a way that the continuous variation of material properties and stresses across the thickness of the shell is achieved. The Golla-Hughes-McTavish (GHM) method has been implemented to model the constrained viscoelastic layer of the ACLD treatment in time domain. Based on the first-order shear deformation theory (FSDT), a finite element (FE) model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG laminated composite shell under a thermal environment. Both symmetric and asymmetric FG laminated composite doubly curved shells are considered for presenting the numerical results. The analysis suggests that the ACLD patch significantly improves the damping characteristics of the doubly curved FG laminated composite shells for suppressing their geometrically nonlinear transient vibrations. It is found that the performance of the ACLD patch with its constraining layer being made of the AFC material is significantly higher than that of the ACLD patch with vertically/obliquely reinforced 1-3 PZC constraining layer. The effects of variation of piezoelectric fiber orientation in both the obliquely reinforced 1-3 PZC and the AFC constraining layers on the control authority of the ACLD patch have also been investigated.

13 citations

Journal ArticleDOI
TL;DR: In this paper, the Enhanced Active Constrained Layer (EACL) treatment is investigated for broadband damping augmentations on beam structures, where the edge element stiffness and the host structure strain field have significant influence on the overall closed-loop system damping and its various components.
Abstract: In this paper, the Enhanced Active Constrained Layer (EACL) treatment is investigated for broadband damping augmentations on beam structures. The EACL concept was originally proposed to improve the damping performance of the Active Constrained Layer (ACL) by introducing edge elements at the treatment boundaries. It has been recognized that the edge elements can increase ACL performance by enhancing the direct active authority of the piezoelectric constraining layer. It has also been demonstrated that the edge element stiffness and the host structure strain field have significant influence on the overall closed-loop system damping and its various components: the active damping, the closed-loop passive damping, and the open-loop passive (fail-safe property - without any active action) damping. Through utilizing this finding, the present study explores how the EACL performance can be synthesized for multiple mode broadband applications using symmetric configurations. Although the edge elements will tend to r...

13 citations

Proceedings ArticleDOI
10 Apr 1995

13 citations

Journal ArticleDOI
TL;DR: The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, and the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency.
Abstract: Flexure-based mechanism like compliant actuation system embeds complex dynamics that will reduce the control bandwidth and limits their dynamic positioning precision. This paper presents a theoretical model of a leaf flexure hinge with damping layers using strain energy method and Kelvin damping model. The modified loss factor of the damped leaf flexure hinge is derived, and the equivalent viscous damping coefficient of the damped leaf hinge is obtained, which could be used to improve the pseudo-rigid-model. The free vibration signals of the hinge in three different damping configurations are measured. The experimental modal analysis also is performed on the three kinds of damped leaf flexure hinges in order to evaluate their 1st order bending natural frequency and vibration-suppressing effects. The evaluation of modified loss factor model also is performed. The experimental results indicate that the constrained layer damping can enhance the structure damping of the hinge even if only single damping layer each side, the modified loss factor model can get good predicts of a damped leaf flexure hinge in the frequency range below 1st order natural frequency, and it is necessary that the dimensional parameters of the damping layers and basic layer of the hinge should be optimized for simplification at the mechanism’s design stage.

13 citations

Journal ArticleDOI
TL;DR: In this article, a new 1-3 viscoelastic composite material (VECM) layer was designed for improved active constrained layer damping (ACLD) treatment of vibration of a functionally graded (FG) circular cylindrical she...
Abstract: A new 1-3 viscoelastic composite material (VECM) layer is designed for improved active constrained layer damping (ACLD) treatment of vibration of a functionally graded (FG) circular cylindrical she...

13 citations


Network Information
Related Topics (5)
Vibration
80K papers, 849.3K citations
76% related
Finite element method
178.6K papers, 3M citations
71% related
Fracture mechanics
58.3K papers, 1.3M citations
71% related
Numerical analysis
52.2K papers, 1.2M citations
69% related
Rotor (electric)
179.9K papers, 1.2M citations
68% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202227
202123
202020
201927
201826