scispace - formally typeset
Search or ask a question
Topic

Constrained-layer damping

About: Constrained-layer damping is a research topic. Over the lifetime, 795 publications have been published within this topic receiving 15758 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the evolutionary structural optimization (ESO) was used to optimize constrained damping layer structure, considering the vibration and energy dissipation mode of the plate with constrained layer damping treatment.
Abstract: The evolutionary structural optimization (ESO) is used to optimize constrained damping layer structure. Considering the vibration and energy dissipation mode of the plate with constrained layer damping treatment, the elements of constrained damping layers and modal loss factor are considered as design variable and objective function, while damping material consumption is considered as a constraint. The sensitivity of modal loss factor to design variable is further derived using modal strain energy analysis method. Numerical example is used to demonstrate the effectiveness of the proposed topology optimization approach. The results show that vibration energy dissipation of the plates can be enhanced by the optimal constrained layer damping layout.

5 citations

Journal ArticleDOI
TL;DR: In this paper, a single link flexible manipulator is attenuated using Active Constrained Layer Damping (ACLD) treatment, which consists of a viscoelastic layer sandwiched between two piezo-electric layers acting as constraining layers with sensing and actuation capabilities.
Abstract: The vibration of a single link flexible manipulator is attenuated using the Active Constrained layer damping (ACLD) treatment. The ACLD treatment consists of a viscoelastic layer sandwiched between two piezo-electric layers acting as constraining layers with sensing and actuation capabilities. The shear deformation of the visco-elastic layer is controlled to enhance the energy dissipation mechanism and attenuate the vibration of the flexible manipulator. A finite element model is used to describe the dynamics of the system. A third order polynomial is used to describe the lateral displacement of the manipulator and a second order polynomial is used to describe the longitudinal displacements of the different layers of the manipulator. An appropriate control law is used to control the system. The Coupled Modal Strain energy technique is used to compute the equivalent viscous damping ratios for the elastic layer using the loss factor data of the material. The theoretical predictions of the model are compared with the experimental performance of a manipulator fully treated with a Dyad 606 visco-elastic layer sandwiched between two layers of polyvinylidene fluoride (PVDF) piezo-electric films. The results obtained clearly demonstrate the attenuation capabilities of the Actively-Controlled Constrained Layer Damping.

5 citations

Patent
30 Jun 2006
TL;DR: A constrained layer damping arrangement comprises a component 2, for example a vane of a gas turbine engine, a viscoelastic layer 4 and a constraining layer 6 as discussed by the authors.
Abstract: A constrained layer damping arrangement comprises a component 2, for example a vane of a gas turbine engine, a viscoelastic layer 4 and a constraining layer 6. The viscoelastic layer 4 comprises two different viscoelastic materials disposed in different regions of the viscoelastic layer 4. The different viscoelastic materials 8, 10 reach their maximum loss factors at different temperatures, so that the damping effectiveness of the combined layer 4 extends over a relatively wide temperature range.

5 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the proposed strategy is very effective to achieve larger sound power reduction by reconfiguring the thickness of constrained layer damping materials for the results of position optimization.
Abstract: A hierarchical optimization strategy is proposed to optimally design constrained layer damping materials patched on the base plate for minimizing sound radiation power. A sound radiation optimization model is established by taking positions and thicknesses of constrained layer damping materials as design variables, and added mass as constraints. The hierarchical optimization procedure is implemented, in which evolutionary structural optimization method is employed to get optimal position layouts of constrained layer damping materials, and genetic algorithm is used to find optimal thickness configurations of constrained layer damping materials by taking the plate with optimal position layouts of constrained layer damping materials as initial structure. Two sound power sensitivities are formulated and compared for position optimization. Numerical examples in which unweighted/weighted objective functions are considered are presented, optimal positions and thickness configurations of constrained layer damping...

5 citations

Journal ArticleDOI
TL;DR: In this paper, the vibration power flow in a submerged infinite constrained layer damping (CLD) cylindrical shell is studied using the wave propagation approach, and the dynamic equations of the shell are derived with the Hamilton principle in conjunction with the Donnell shell assumptions.
Abstract: The vibration power flow in a submerged infinite constrained layer damping (CLD) cylindrical shell is studied in the present paper using the wave propagation approach. Dynamic equations of the shell are derived with the Hamilton principle in conjunction with the Donnell shell assumptions. Besides, the pressure field in the fluid is described by the Helmholtz equation and the damping characteristics are considered with the complex modulus method. Then, the shell-fluid coupling dynamic equations are obtained by using the coupling between the shell and the fluid. Vibration power flows inputted to the coupled system and transmitted along the shell axial direction are both studied. Results show that input power flow varies with driving frequency and circumferential mode order, and the constrained damping layer will restrict the exciting force inputting power flow into the shell, especially for a thicker viscoelastic layer, a thicker or stiffer constraining layer (CL), and a higher circumferential mode order. Cut-off frequencies do not exist in the CLD cylindrical shell, so that the exciting force can input power flow into the shell at any frequency and for any circumferential mode order. The power flow transmitted in the CLD cylindrical shell exhibits an exponential decay form along its axial direction, which indicates that the constrained damping layer has a good damping effect, especially at middle or high frequencies.

5 citations


Network Information
Related Topics (5)
Vibration
80K papers, 849.3K citations
76% related
Finite element method
178.6K papers, 3M citations
71% related
Fracture mechanics
58.3K papers, 1.3M citations
71% related
Numerical analysis
52.2K papers, 1.2M citations
69% related
Rotor (electric)
179.9K papers, 1.2M citations
68% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202227
202123
202020
201927
201826