scispace - formally typeset
Search or ask a question
Topic

Contact area

About: Contact area is a research topic. Over the lifetime, 12358 publications have been published within this topic receiving 256401 citations. The topic is also known as: contact patch & contact region.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an isotropic model for the effective viscosities of sintering particle packings is presented, where the relationship between the macroscopic stress and deformation rate is based on the behavior of individual interparticle contacts.
Abstract: This paper presents an isotropic model for the effective viscosities of sintering particle packings. The relationship between the macroscopic stress and deformation rate is based on the behavior of individual interparticle contacts, represented by contact viscosities, and the statistics of the packing. The contact viscosities depend on the contact area, which is the primary variable used to describe the state of the packing. A direct consequence of this choice of state variable is that the effective viscosities are identically zero for an undeformed and unsintered packing. Specific results are presented for the case of Newtonian viscous materials. The model is compared with existing models for porous Newtonian viscous materials. Experiments conducted with spherical glass powder packings show good agreement with the model. Finite-element simulations using the model have been used to study forging of a pellet.

85 citations

Journal ArticleDOI
TL;DR: Three experiments have been conducted to relate variations in the perception of hand-transmitted vibration to previously reported properties of tactile channels, and there were regional differences in sensitivity over the hand within the NP I channel but not within the Pacinian channel.
Abstract: The detection of vibration applied to the glabrous skin of the hand varies with contact conditions. Three experiments have been conducted to relate variations in the perception of hand-transmitted vibration to previously reported properties of tactile channels. The effects of a surround around the area of contact, the size of the area of contact, the location of the area of contact, the contact force, and the hand posture on perception of thresholds were determined for 8-500 Hz vibration. Removal of a surround around a contact area on the fingertip elevated thresholds of the NP II channel (FA I fibres) at frequencies less than 31.5 Hz and reduced thresholds of the Pacinian channel (FA II fibres) at frequencies greater than about 63 Hz. When no surround was present, thresholds reduced systematically as the contact area increased from the fingertip to the whole hand at frequencies from 16 to 125 Hz, although the decrease was not inversely proportional to the increase in contact area. The results are partly explained by spatial summation in the Pacinian channel (FA II fibres) and the involvement of the NP II channel (SA II) with some influence of biodynamic responses and contact pressures. There were regional differences in sensitivity over the hand within the NP I channel but not within the Pacinian channel: the NP I thresholds (less than 31.5 Hz) decreased from proximal to distal regions of the hand, whereas the Pacinian thresholds (125 Hz) were independent of contact location over the hand.

85 citations

Journal ArticleDOI
TL;DR: Where the severity of the sliding conditions dominates the wear and degradation of typical engineering tribomaterials, the results suggest that joint motion is actually beneficial for maintaining low matrix stresses, low contact areas, and effective lubrication for the fluid-saturated porous cartilage tissue.
Abstract: The progression of local cartilage surface damage toward early stage osteoarthritis (OA) likely depends on the severity of the damage and its impact on the local lubrication and stress distribution in the surrounding tissue. It is difficult to study the local responses using traditional methods; in situ microtribological methods are being pursued here as a means to elucidate the mechanical aspects of OA progression. While decades of research have been dedicated to the macrotribological properties of articular cartilage, the microscale response is unclear. An experimental study of healthy cartilage microtribology was undertaken to assess the physiological relevance of a microscale friction probe. Normal forces were on the order of 50 mN. Sliding speed varied from 0 to 5 mm/s, and two probes radii, 0.8 and 3.2 mm, were used in the study. In situ measurements of the indentation depth into the cartilage enabled calculations of contact area, effective elastic modulus, elastic and fluid normal force contributions, and the interfacial friction coefficient. This work resulted in the following findings: (1) at high sliding speed (V = 1–5 mm/s), the friction coefficient was low (μ = 0.025) and insensitive to probe radius (0.8–3.2 mm) despite the fourfold difference in the resulting contact areas; (2) the contact area was a strong function of the probe radius and sliding speed; (3) the friction coefficient was proportional to contact area when sliding speed varied from 0.05 to 5 mm/s; (4) the fluid load support was greater than 85% for all sliding conditions (0% fluid support when V = 0) and was insensitive to both probe radius and sliding speed. The findings were consistent with the adhesive theory of friction; as speed increased, increased effective hardness reduced the area of solid–solid contact which subsequently reduced the friction force. Where the severity of the sliding conditions dominates the wear and degradation of typical engineering tribomaterials, the results suggest that joint motion is actually beneficial for maintaining low matrix stresses, low contact areas, and effective lubrication for the fluid-saturated porous cartilage tissue. Further, the results demonstrated effective pressurization and lubrication beneath single asperity microscale contacts. With carefully designed experimental conditions, local friction probes can facilitate more fundamental studies of cartilage lubrication, friction and wear, and potentially add important insights into the mechanical mechanisms of OA.

85 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that Amonton's law is expected for stiff enough solids, even when the adhesional interaction between the solids is included in the analysis, and they also discuss the pressure dependence of the frictional shear stress for polymers.
Abstract: Amonton's law states that the sliding friction force increases linearly with the load. We show that this result is expected for stiff enough solids, even when the adhesional interaction between the solids is included in the analysis. As a function of the magnitude of the elastic modulus E, one can distinguish between three regions: (a) for E>E2, the area of real contact (and the friction force) depends linearly on the load, (b) for E1

85 citations

Journal ArticleDOI
TL;DR: In this article, friction and adhesion measurements between surfaces of cross-linked, stiff polymers of varying roughness against smooth, bare mica surfaces were carried out in dry air as well as in the presence of lubricating oil.
Abstract: Friction and adhesion measurements between surfaces of cross-linked, stiff polymers of varying roughness against smooth, bare mica surfaces were carried out in dry air as well as in the presence of lubricating oil. The nominal (macroscopic) contact area varies with the applied load according to the Johnson, Kendall and Roberts (JKR) theory, yet shows significant hysteresis due to the irreversibility arising from the loading/unloading curves of multiple asperities. Upon introducing the oil between the surfaces, the critical shear stress is reduced to zero due to the elimination of the adhesion force. However, the effect is less noticeable on the friction coefficient. Lastly, the effect of increasing the (RMS) roughness was greatest over the first few nanometers due to the diminution of the adhesion-controlled contribution to the friction, after which a further increase in roughness had less dramatic effects. A model is presented to account for the observed adhesion hysteresis during repeated loading/unloading cycles of purely elastically deforming rough surfaces.

85 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Coating
379.8K papers, 3.1M citations
81% related
Finite element method
178.6K papers, 3M citations
81% related
Ceramic
155.2K papers, 1.6M citations
77% related
Microstructure
148.6K papers, 2.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023102
2022253
2021375
2020467
2019554
2018528