scispace - formally typeset
Search or ask a question
Topic

Contact area

About: Contact area is a research topic. Over the lifetime, 12358 publications have been published within this topic receiving 256401 citations. The topic is also known as: contact patch & contact region.


Papers
More filters
Journal ArticleDOI
TL;DR: A magnetic force-based direct drive modulation method to measure local nano-rheological properties of soft materials across a broad frequency range using colloid-attached atomic force microscope probes in liquid highlights possible transitions in the probe-material contact mechanical behaviour for soft matter.
Abstract: We present a magnetic force-based direct drive modulation method to measure local nano-rheological properties of soft materials across a broad frequency range (10 Hz to 2 kHz) using colloid-attached atomic force microscope (AFM) probes in liquid. The direct drive method enables artefact-free measurements over several decades of excitation frequency, and avoids the need to evaluate medium-induced hydrodynamic drag effects. The method was applied to measure the local mechanical properties of polyacrylamide hydrogels. The frequency-dependent storage stiffness, loss stiffness, and loss tangent (tan δ) were quantified for hydrogels having high and low crosslinking densities by measuring the amplitude and the phase response of the cantilever while the colloid was in contact with the hydrogel. The frequency bandwidth was further expanded to lower effective frequencies (0.1 Hz to 10 Hz) by obtaining force–displacement (FD) curves. Slow FD measurements showed a recoverable but highly hysteretic response, with the contact mechanical behaviour dependent on the loading direction: approach curves showed Hertzian behaviour while retraction curves fit the JKR contact mechanics model well into the adhesive regime, after which multiple detachment instabilities occurred. Using small amplitude dynamic modulation to explore faster rates, the load dependence of the storage stiffness transitioned from Hertzian to a dynamic punch-type (constant contact area) model, indicating significant influence of material dissipation coupled with adhesion. Using the appropriate contact model across the full frequency range measured, the storage moduli were found to remain nearly constant until an increase began near ∼100 Hz. The softer gels' storage modulus increased from 7.9 ± 0.4 to 14.5 ± 2.1 kPa (∼85%), and the stiffer gels' storage modulus increased from 16.3 ± 1.1 to 31.7 ± 5.0 kPa (∼95%). This increase at high frequencies may be attributed to a contribution from solvent confinement in the hydrogel (poroelasticity). The storage moduli measured by both macro-rheometry and AFM FD curves were comparable to those measured using the modulation method at their overlapping frequencies (10–25 Hz). In all cases, care was taken to ensure the contact mechanics models were applied within the important limit of small relative deformations. This study thus highlights possible transitions in the probe–material contact mechanical behaviour for soft matter, especially when the applied strain rates and the material relaxation rates become comparable. In particular, at low frequencies, the modulus follows Hertzian contact mechanics, while at high frequencies adhesive contact is well represented by punch-like behaviour. More generally, use of the Hertz model on hydrogels at high loading rates, at high strains, or during the retraction portion of FD curves, leads to significant errors in the calculated moduli.

75 citations

Journal ArticleDOI
TL;DR: A variable aperture has been fabricated and demonstrated using polydimethylsiloxane-based optofluidic technology and shows that aperture diameter can be continuously changed from zero to 6.35 mm.
Abstract: A variable aperture has been fabricated and demonstrated using polydimethylsiloxane-based optofluidic technology. The device consists of a deformable membrane, an air pressure chamber, a cavity filled with light-absorbing liquid, and a rigid transparent upper plate. The working principle of the device is based on the deformable capability of the thin membrane structure and its resultant contact with the rigid plate. The contact area can be easily controlled by varying the air volume introduced and hence can serve as a light transmission aperture. Experimental results show that aperture diameter can be continuously changed from zero to 6.35 mm.

75 citations

Journal ArticleDOI
TL;DR: The comparison between mixed SAM surfaces and conventional solids revealed that the evaporation/wetting hysteresis is dominated by the roughness (from nanometer to micrometer scale) rather than the chemical heterogeneity of the surface.
Abstract: The evaporation of water microdroplets from solid surfaces was studied using digital contact angle analysis techniques. An inclusive trend for the evaporation process, that is, a switch from the initial constant contact area to the subsequent constant contact angle mode was observed for all surfaces examined, including mixed self-assembled monolayers (SAMs) on gold and “conventional” surfaces such as silicon wafers, polycarbonate, and Teflon. More importantly, it has been shown that the change in contact angle during the evaporation process (i.e., evaporation hysteresis, Δθevap, the difference between the initial and “equilibrated” contact angle) correlates well with the wetting hysteresis determined directly (i.e., measuring the advancing and receding contact angles on these surfaces by changing the drop volume). The comparison between mixed SAM surfaces and conventional solids revealed that the evaporation/wetting hysteresis is dominated by the roughness (from nanometer to micrometer scale) rather than ...

75 citations

Journal ArticleDOI
TL;DR: In this article, the influence of bulges around the dimples rim on the sliding friction and wear behavior was investigated and the mechanisms of friction coefficient reduction and wear resistance enhancement were studied and discussed quantitatively.

74 citations

Journal ArticleDOI
TL;DR: In this article, a method to calculate the contact stiffness between a layered material and an ultrasonic atomic force microscope (UAFM) tip is proposed, which converges into a couple of iterations and does not suffer from numerical convergence difficulties as does finite element analysis.
Abstract: A method to calculate the contact stiffness between a layered material and an ultrasonic atomic force microscope (UAFM) tip is proposed. The radiation impedance method is used to determine the ratio of the applied force to the average displacement within the contact area. This information is used in an iterative algorithm based on Hertzian theory to obtain the contact stiffness. The algorithm converges into a couple of iterations and does not suffer from numerical convergence difficulties as does finite element analysis (FEA). In the ultrasonic frequency range, comparisons with Hertzian theory and FEA show the validity of the results in a quasistatic case. Definitions of the minimum detectable layer thickness and the penetration depth of the UAFM are given and evaluated for several thin film–substrate pairs. These results also show the potential of the method for modeling defects and power loss due to radiation in layered materials.

74 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Coating
379.8K papers, 3.1M citations
81% related
Finite element method
178.6K papers, 3M citations
81% related
Ceramic
155.2K papers, 1.6M citations
77% related
Microstructure
148.6K papers, 2.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023102
2022253
2021375
2020467
2019554
2018528