scispace - formally typeset
Search or ask a question
Topic

Contact area

About: Contact area is a research topic. Over the lifetime, 12358 publications have been published within this topic receiving 256401 citations. The topic is also known as: contact patch & contact region.


Papers
More filters
Patent
27 May 1999
TL;DR: In this paper, the memory cells are formed at selected locations of at least a portion of a semiconductor wafer and the pattern is removed, and an upper electrode is formed and electrically coupled to the contact area.
Abstract: A method for manufacturing a memory device having a plurality of memory cells. Each memory cell has a non-volatile resistive memory element with a small active area. A plurality of memory cells are formed at selected locations of at least a portion of a semiconductor wafer. To form the memory cells, a lower electrode layer and a memory material layer are deposited over at least a portion of the wafer. Patterns are formed over desired contact locations of the memory material layer and etching is used to remove portions of the memory material layer. The etching step undercuts the patterns and forms memory elements having a protruding contact portion with an apex contact area. The pattern is removed, and an upper electrode is formed and electrically coupled to the contact area. Corresponding access devices and word/bit line conductor grids are provided and coupled to the memory cells.

229 citations

Journal ArticleDOI
TL;DR: A review of the published articles on contact angles and summarizes the views of the both sides can be found in this article, where the weak and strong sides of both three-phase contact line and contact area approaches are discussed in detail and some practical conclusions are drawn.

229 citations

Journal ArticleDOI
TL;DR: In this article, a single- nozzle spray cooling heat transfer mechanism with varying amounts of dissolved gas was investigated using two powerful techniques: time and space resolved heat transfer distributions produced by a single nozzle were measured using an array of individually controlled microheaters, while visualization and measurements of the liquid-solid contact area and the three phase contact line length were made using a total internal reflectance technique.

228 citations

Journal ArticleDOI
TL;DR: In this paper, the amplitude and phase of the cantilever vibration as well as the shift of the resonance frequencies contain information about local tip-sample contact stiffness and can be used as imaging quantities.
Abstract: In atomic force acoustic microscopy (AFAM) the cantilever of an atomic force microscope is vibrated at ultrasonic frequencies while a sample surface is scanned with the sensor tip contacting the sample. As a consequence, the amplitude and phase of the cantilever vibration as well as the shift of the cantilever resonance frequencies contain information about local tip-sample contact stiffness and can be used as imaging quantities. An appropriate theoretical description of the transfer of ultrasound in an atomic force microscope enables the measurement of the local mechanical material parameters of the sample surface by evaluating experimental cantilever vibration spectra. In the experiments presented here, we examine the sensitivity of the technique using silicon single crystals. Furthermore, we show that the ferroelectric domains of lead zirconate-titanate ceramics can be imaged by AFAM and that local elastic constants of the sample surface can be determined quantitatively. The lateral resolution of the technique is given by the contact area formed by the sensor tip and the sample surface, which can have a diameter of <10 nm.

227 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered a contact problem in which an elastic half-plane is pressed against a rigid fractally rough surface, whose profile is defined by a Weierstrass series.
Abstract: A contact problem is considered in which an elastic half–plane is pressed against a rigid fractally rough surface, whose profile is defined by a Weierstrass series. It is shown that no applied mean pressure is sufficiently large to ensure full contact and indeed there are not even any contact areas of finite dimension — the contact area consists of a set of fractal character for all values of the geometric and loading parameters. A solution for the partial contact of a sinusoidal surface is used to develop a relation between the contact pressure distribution at scale n − 1 and that at scale n . Recursive numerical integration of this relation yields the contact area as a function of scale. An analytical solution to the same problem appropriate at large n is constructed following a technique due to Archard. This is found to give a very good approximation to the numerical results even at small n , except for cases where the dimensionless applied load is large. The contact area is found to decrease continuously with n , tending to a power–law behaviour at large n which corresponds to a limiting fractal dimension of (2 − D ), where D is the fractal dimension of the surface profile. However, it is not a ‘simple’ fractal, in the sense that it deviates from the power–law form at low n , at which there is also a dependence on the applied load. Contact segment lengths become smaller at small scales, but an appropriately normalized size distribution tends to a limiting function at large n . † The authors dedicate this paper to the memory of Dr J. F. Archard, 1918–1989.

226 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Coating
379.8K papers, 3.1M citations
81% related
Finite element method
178.6K papers, 3M citations
81% related
Ceramic
155.2K papers, 1.6M citations
77% related
Microstructure
148.6K papers, 2.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023102
2022253
2021375
2020467
2019554
2018528