scispace - formally typeset
Search or ask a question
Topic

Contact area

About: Contact area is a research topic. Over the lifetime, 12358 publications have been published within this topic receiving 256401 citations. The topic is also known as: contact patch & contact region.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present an instrumented indentation method that provides a continuous record of the variation of indentation load, P, as a function of the depth of penetration, h, into the indented specimen.

657 citations

Journal ArticleDOI
05 Jun 2015-Science
TL;DR: Simulations showed that sliding of the graphene patches around the tiny nanodiamond particles led to nanoscrolls with reduced contact area that slide easily against the amorphous diamondlike carbon surface, contributing to superlubricity at engineering scale.
Abstract: Friction and wear remain as the primary modes of mechanical energy dissipation in moving mechanical assemblies; thus, it is desirable to minimize friction in a number of applications. We demonstrate that superlubricity can be realized at engineering scale when graphene is used in combination with nanodiamond particles and diamondlike carbon (DLC). Macroscopic superlubricity originates because graphene patches at a sliding interface wrap around nanodiamonds to form nanoscrolls with reduced contact area that slide against the DLC surface, achieving an incommensurate contact and substantially reduced coefficient of friction (~0.004). Atomistic simulations elucidate the overall mechanism and mesoscopic link bridging the nanoscale mechanics and macroscopic experimental observations.

645 citations

Journal ArticleDOI
TL;DR: In this article, an elastic-plastic asperity microcontact model for contact between two nominally flat surfaces is presented, where the transition from elastic deformation to fully plastic flow of the contacting as perity is modeled based on contact-mechanics theories in conjunction with the continuity and smoothness of variables across different modes of deformation.
Abstract: This paper presents an elastic-plastic asperity microcontact model for contact between two nominally flat surfaces. The transition from elastic deformation to fully plastic flow of the contacting asperity is modeled based on contact-mechanics theories in conjunction with the continuity and smoothness of variables across different modes of deformation. The relations of the mean contact pressure and contact area of the asperity to its contact interference in the elastoplastic regime of deformation are respectively modeled by logarithmic and fourth-order polynomial functions. These asperity-scale equations are then used to develop the elastic-plastic contact model between two rough surfaces, allowing the mean surface separation and the real area of contact to be calculated as functions of the contact load and surface plasticity index. Results are presented for a wide range of contact load and plasticity index, showing the importance of accurately modeling the deformation in the elastoplastic transitional regime of the asperity contacts. The results are also compared with those calculated by the GW and CEB models, showing that the present model is more complete in describing the contact of rough surfaces.

638 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider contact problems for very smooth polymer (PMMA) and Pyrex glass surfaces prepared by cooling liquids of glassy materials from above the glass transition temperature.

613 citations

Journal ArticleDOI
16 Jun 2005-Nature
TL;DR: This work uses molecular simulations to test the limits of contact mechanics under ideal conditions and indicates that atomic discreteness within the bulk of the solids does not have a significant effect, but that the atomic-scale surface roughness that is always produced by discrete atoms leads to dramatic deviations from continuum theory.
Abstract: Forces acting within the area of atomic contact between surfaces play a central role in friction and adhesion. Such forces are traditionally calculated using continuum contact mechanics, which is known to break down as the contact radius approaches atomic dimensions. Yet contact mechanics is being applied at ever smaller lengths, driven by interest in shrinking devices to nanometre scales, creating nanostructured materials with optimized mechanical properties, and understanding the molecular origins of macroscopic friction and adhesion. Here we use molecular simulations to test the limits of contact mechanics under ideal conditions. Our findings indicate that atomic discreteness within the bulk of the solids does not have a significant effect, but that the atomic-scale surface roughness that is always produced by discrete atoms leads to dramatic deviations from continuum theory. Contact areas and stresses may be changed by a factor of two, whereas friction and lateral contact stiffness change by an order of magnitude. These variations are likely to affect continuum predictions for many macroscopic rough surfaces, where studies show that the total contact area is broken up into many separate regions with very small mean radius.

590 citations


Network Information
Related Topics (5)
Ultimate tensile strength
129.2K papers, 2.1M citations
83% related
Coating
379.8K papers, 3.1M citations
81% related
Finite element method
178.6K papers, 3M citations
81% related
Ceramic
155.2K papers, 1.6M citations
77% related
Microstructure
148.6K papers, 2.2M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023102
2022253
2021375
2020467
2019554
2018528