scispace - formally typeset
Search or ask a question
Topic

Contact resistance

About: Contact resistance is a research topic. Over the lifetime, 15262 publications have been published within this topic receiving 232144 citations. The topic is also known as: electrical contact resistance & ECR.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that through a proper understanding and design of source/drain contacts and the right choice of number of MoS(2) layers the excellent intrinsic properties of this 2-D material can be harvested.
Abstract: While there has been growing interest in two-dimensional (2-D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancy due to the lack of a complete picture of their performance potential. The focus of this article is on contacts. We demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS2 layers the excellent intrinsic properties of this 2-D material can be harvested. Using scandium contacts on 10-nm-thick exfoliated MoS2 flakes that are covered by a 15 nm Al2O3 film, high effective mobilities of 700 cm2/(V s) are achieved at room temperature. This breakthrough is largely attributed to the fact that we succeeded in eliminating contact resistance effects that limited the device performance in the past unrecognized. In fact, the apparent linear dependence of current on drain voltage had mislead researchers to believe that a truly Ohmic contact had already been achieved, a miscon...

2,185 citations

Journal ArticleDOI
TL;DR: High performance p-type field-effect transistors based on single layered WSe(2) as the active channel with chemically doped source/drain contacts and high-κ gate dielectrics are reported.
Abstract: We report high performance p-type field-effect transistors based on single layered (thickness, ∼0.7 nm) WSe(2) as the active channel with chemically doped source/drain contacts and high-κ gate dielectrics. The top-gated monolayer transistors exhibit a high effective hole mobility of ∼250 cm(2)/(V s), perfect subthreshold swing of ∼60 mV/dec, and I(ON)/I(OFF) of >10(6) at room temperature. Special attention is given to lowering the contact resistance for hole injection by using high work function Pd contacts along with degenerate surface doping of the contacts by patterned NO(2) chemisorption on WSe(2). The results here present a promising material system and device architecture for p-type monolayer transistors with excellent characteristics.

1,584 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the metallic 1T phase of MoS2 can be locally induced on semiconducting 2H phase nanosheets, thus decreasing contact resistances to 200-300 Ω μm at zero gate bias.
Abstract: Ultrathin molybdenum disulphide (MoS2) has emerged as an interesting layered semiconductor because of its finite energy bandgap and the absence of dangling bonds. However, metals deposited on the semiconducting 2H phase usually form high-resistance (0.7 kΩ μm–10 kΩ μm) contacts, leading to Schottky-limited transport. In this study, we demonstrate that the metallic 1T phase of MoS2 can be locally induced on semiconducting 2H phase nanosheets, thus decreasing contact resistances to 200–300 Ω μm at zero gate bias. Field-effect transistors (FETs) with 1T phase electrodes fabricated and tested in air exhibit mobility values of ~50 cm2 V−1 s−1, subthreshold swing values below 100 mV per decade, on/off ratios of >107, drive currents approaching ~100 μA μm−1, and excellent current saturation. The deposition of different metals has limited influence on the FET performance, suggesting that the 1T/2H interface controls carrier injection into the channel. An increased reproducibility of the electrical characteristics is also obtained with our strategy based on phase engineering of MoS2. Non-optimal electrical contacts can significantly limit the performance of MoS2-based thin-film transistors. Transformation of semiconducting MoS2 into its metallic phase is now shown as a viable strategy to decrease the metal–MoS2 contact resistance.

1,463 citations

Journal ArticleDOI
Stefan Heinze1, Jerry Tersoff1, Richard Martel1, Vincent Derycke1, Joerg Appenzeller1, Ph. Avouris1 
TL;DR: In this paper, the authors show that carbon nanotube transistors operate as unconventional Schottky barrier transistors, in which transistor action occurs primarily by varying the contact resistance rather than the channel conductance.
Abstract: We show that carbon nanotube transistors operate as unconventional "Schottky barrier transistors," in which transistor action occurs primarily by varying the contact resistance rather than the channel conductance. Transistor characteristics are calculated for both idealized and realistic geometries, and scaling behavior is demonstrated. Our results explain a variety of experimental observations, including the quite different effects of doping and adsorbed gases. The electrode geometry is shown to be crucial for good device performance.

1,225 citations

Journal ArticleDOI
TL;DR: In this paper, high performance p-type field effect transistors based on single layered (thickness, 0.7 nm) WSe2 as the active channel with chemically doped source/drain contacts and high-kappa gate dielectrics were reported.
Abstract: We report high performance p-type field-effect transistors based on single layered (thickness, ~0.7 nm) WSe2 as the active channel with chemically doped source/drain contacts and high-{\kappa} gate dielectrics. The top-gated monolayer transistors exhibit a high effective hole mobility of ~250 cm2/Vs, perfect subthreshold swing of ~60 mV/dec, and ION/IOFF of >10^6 at room temperature. Special attention is given to lowering the contact resistance for hole injection by using high work function Pd contacts along with degenerate surface doping of the contacts by patterned NO2 chemisorption on WSe2. The results here present a promising material system and device architecture for p-type monolayer transistors with excellent characteristics.

1,176 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
89% related
Thin film
275.5K papers, 4.5M citations
88% related
Dielectric
169.7K papers, 2.7M citations
85% related
Band gap
86.8K papers, 2.2M citations
85% related
Oxide
213.4K papers, 3.6M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023213
2022432
2021286
2020384
2019528
2018503