scispace - formally typeset
Search or ask a question
Topic

Contact resistance

About: Contact resistance is a research topic. Over the lifetime, 15262 publications have been published within this topic receiving 232144 citations. The topic is also known as: electrical contact resistance & ECR.


Papers
More filters
Journal ArticleDOI
TL;DR: This work investigates optimum curing conditions to achieve the best performance of ACF joints and shows a strong dependence of curing condition on the electrical and mechanical performances.

102 citations

Journal ArticleDOI
TL;DR: In this paper, gold was deposited onto pentacene films at various deposition rates to investigate the effects of metal penetration into organic semiconductors on the electrical properties of organic thin-film transistors.
Abstract: To investigate the effects of metal penetration into organic semiconductors on the electrical properties of organic thin film transistors, gold was deposited onto pentacene films at various deposition rates. The sharp interface between the gold electrode and the pentacene film that results from a fast deposition rate was found to produce lower contact resistance and an increase in the field-effect mobility.

102 citations

Journal ArticleDOI
TL;DR: In this paper, the role of Al in the metal multilayer and of Al-GaN in the AlGaN on the Ohmic contact formation on n-type GaN has been determined.
Abstract: A standard metallization scheme for the formation of Ohmic contacts on n-type GaN does exist. It has the following multilayer structure: Ti∕Al∕metal∕Au. Ti is known to extract N out of the GaN. This leaves a high density of N vacancies (donors) near the interface pinning the Fermi level. The created tunnel junction is responsible for an Ohmic contact behavior. Au is deposited as the final metal layer to exclude oxidation of the contact and the metal should limit the diffusion of Au into the layers below and vice versa. Al in the metallization scheme is known to improve the contact resistance, but the reason why has not been reported yet. We studied Ti and Ti∕Al contacts on GaN and AlGaN∕GaN as a function of annealing temperature by transmission electron microscopy. The role of Al in the metal multilayer, and of Al in the AlGaN on the Ohmic contact formation, has been determined. The latter result indicates that the standard metallization scheme for GaN cannot be simply transferred to AlGaN∕GaN structures.

102 citations

Journal ArticleDOI
TL;DR: In this paper, an organic thin-film-transistor (OTFT)-driven active-matrix twisted-nematic liquid crystal display (AM-TN-LCD) was demonstrated on a glass substrate, with a resolution of 160spl times/120 pixels, 79 ppi.
Abstract: We have demonstrated an organic thin-film-transistor (OTFT)-driven active-matrix twisted-nematic liquid crystal display (AM-TN-LCD) on a glass substrate, with a resolution of 160/spl times/120 pixels, 79 ppi. Substrate temperature was kept below the plastic-compatible temperature of 180/spl deg/C throughout the fabrication process. In order to realize an OTFT-driven display with fine resolution, we employed short-channel bottom-contact (BC) pentacene OTFTs. It has been known that their drivability is limited by contact resistance at source/drain (S/D). We found that the S/D contact resistance was markedly reduced when the thickness of the nonohmic Ti adhesion layer for ohmic Au S/D electrodes was reduced less than /spl sim/3 nm. We elucidate that this 3 nm corresponds to the thickness of the accumulating layer in a pentacene channel. When we use a self-assembled monolayer of mercapto-silane-coupling agent as the adhesion layer, the contact resistance becomes negligibly small and BC OTFTs scalable below 10 /spl mu/m were obtained. In addition to this OTFT-cell technology, we developed a low-damage pentacene patterning technique for integration of OTFTs and introduced low-temperature panel assembly process to suppress thermal-stress degradation of pentacene OTFTs, which are the key technologies to achieve OTFT-driven AM-TN-LCD.

101 citations

Journal ArticleDOI
TL;DR: In this paper, an organic thin film transistors (OTFTs) with conductive polymer poly (3,4-ethylenedioxythiophene)/poly(4-styrenesulphonate) (PEDOT) electrodes were fabricated by a simple polymer inking and stamping technique.
Abstract: We report organic thin film transistors (OTFTs) with conductive polymer poly (3,4-ethylenedioxythiophene)/poly(4-styrenesulphonate) (PEDOT) electrodes that are fabricated by a simple polymer inking and stamping technique. An OTFT channel length of 2μm has been achieved. This patterning technique is a purely additive process, which does not affect the functionality of the conductive polymers, and is fully compatible for patterning on a flexible substrate. Electrical characteristics of top contact (TC) pentacene TFTs with PEDOT electrodes is superior to those with gold electrodes due to a lower carrier injection barrier. Extracted contact resistance shows that the channel length of TC OTFTs can be further reduced to increase the drain current.

101 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
89% related
Thin film
275.5K papers, 4.5M citations
88% related
Dielectric
169.7K papers, 2.7M citations
85% related
Band gap
86.8K papers, 2.2M citations
85% related
Oxide
213.4K papers, 3.6M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023213
2022432
2021286
2020384
2019528
2018503