scispace - formally typeset
Search or ask a question
Topic

Content-addressable memory

About: Content-addressable memory is a research topic. Over the lifetime, 7457 publications have been published within this topic receiving 191771 citations. The topic is also known as: CAM & associative memory.


Papers
More filters
Journal ArticleDOI
TL;DR: A model of a system having a large number of simple equivalent components, based on aspects of neurobiology but readily adapted to integrated circuits, produces a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size.
Abstract: Computational properties of use of biological organisms or to the construction of computers can emerge as collective properties of systems having a large number of simple equivalent components (or neurons). The physical meaning of content-addressable memory is described by an appropriate phase space flow of the state of a system. A model of such a system is given, based on aspects of neurobiology but readily adapted to integrated circuits. The collective properties of this model produce a content-addressable memory which correctly yields an entire memory from any subpart of sufficient size. The algorithm for the time evolution of the state of the system is based on asynchronous parallel processing. Additional emergent collective properties include some capacity for generalization, familiarity recognition, categorization, error correction, and time sequence retention. The collective properties are only weakly sensitive to details of the modeling or the failure of individual devices.

16,652 citations

Journal ArticleDOI
TL;DR: A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Abstract: We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.

15,055 citations

Book
01 Jan 1984
TL;DR: The purpose and nature of Biological Memory, as well as some of the aspects of Memory Aspects, are explained.
Abstract: 1. Various Aspects of Memory.- 1.1 On the Purpose and Nature of Biological Memory.- 1.1.1 Some Fundamental Concepts.- 1.1.2 The Classical Laws of Association.- 1.1.3 On Different Levels of Modelling.- 1.2 Questions Concerning the Fundamental Mechanisms of Memory.- 1.2.1 Where Do the Signals Relating to Memory Act Upon?.- 1.2.2 What Kind of Encoding is Used for Neural Signals?.- 1.2.3 What are the Variable Memory Elements?.- 1.2.4 How are Neural Signals Addressed in Memory?.- 1.3 Elementary Operations Implemented by Associative Memory.- 1.3.1 Associative Recall.- 1.3.2 Production of Sequences from the Associative Memory.- 1.3.3 On the Meaning of Background and Context.- 1.4 More Abstract Aspects of Memory.- 1.4.1 The Problem of Infinite-State Memory.- 1.4.2 Invariant Representations.- 1.4.3 Symbolic Representations.- 1.4.4 Virtual Images.- 1.4.5 The Logic of Stored Knowledge.- 2. Pattern Mathematics.- 2.1 Mathematical Notations and Methods.- 2.1.1 Vector Space Concepts.- 2.1.2 Matrix Notations.- 2.1.3 Further Properties of Matrices.- 2.1.4 Matrix Equations.- 2.1.5 Projection Operators.- 2.1.6 On Matrix Differential Calculus.- 2.2 Distance Measures for Patterns.- 2.2.1 Measures of Similarity and Distance in Vector Spaces.- 2.2.2 Measures of Similarity and Distance Between Symbol Strings.- 2.2.3 More Accurate Distance Measures for Text.- 3. Classical Learning Systems.- 3.1 The Adaptive Linear Element (Adaline).- 3.1.1 Description of Adaptation by the Stochastic Approximation.- 3.2 The Perceptron.- 3.3 The Learning Matrix.- 3.4 Physical Realization of Adaptive Weights.- 3.4.1 Perceptron and Adaline.- 3.4.2 Classical Conditioning.- 3.4.3 Conjunction Learning Switches.- 3.4.4 Digital Representation of Adaptive Circuits.- 3.4.5 Biological Components.- 4. A New Approach to Adaptive Filters.- 4.1 Survey of Some Necessary Functions.- 4.2 On the "Transfer Function" of the Neuron.- 4.3 Models for Basic Adaptive Units.- 4.3.1 On the Linearization of the Basic Unit.- 4.3.2 Various Cases of Adaptation Laws.- 4.3.3 Two Limit Theorems.- 4.3.4 The Novelty Detector.- 4.4 Adaptive Feedback Networks.- 4.4.1 The Autocorrelation Matrix Memory.- 4.4.2 The Novelty Filter.- 5. Self-Organizing Feature Maps.- 5.1 On the Feature Maps of the Brain.- 5.2 Formation of Localized Responses by Lateral Feedback.- 5.3 Computational Simplification of the Process.- 5.3.1 Definition of the Topology-Preserving Mapping.- 5.3.2 A Simple Two-Dimensional Self-Organizing System.- 5.4 Demonstrations of Simple Topology-Preserving Mappings.- 5.4.1 Images of Various Distributions of Input Vectors.- 5.4.2 "The Magic TV".- 5.4.3 Mapping by a Feeler Mechanism.- 5.5 Tonotopic Map.- 5.6 Formation of Hierarchical Representations.- 5.6.1 Taxonomy Example.- 5.6.2 Phoneme Map.- 5.7 Mathematical Treatment of Self-Organization.- 5.7.1 Ordering of Weights.- 5.7.2 Convergence Phase.- 5.8 Automatic Selection of Feature Dimensions.- 6. Optimal Associative Mappings.- 6.1 Transfer Function of an Associative Network.- 6.2 Autoassociative Recall as an Orthogonal Projection.- 6.2.1 Orthogonal Projections.- 6.2.2 Error-Correcting Properties of Projections.- 6.3 The Novelty Filter.- 6.3.1 Two Examples of Novelty Filter.- 6.3.2 Novelty Filter as an Autoassociative Memory.- 6.4 Autoassociative Encoding.- 6.4.1 An Example of Autoassociative Encoding.- 6.5 Optimal Associative Mappings.- 6.5.1 The Optimal Linear Associative Mapping.- 6.5.2 Optimal Nonlinear Associative Mappings.- 6.6 Relationship Between Associative Mapping, Linear Regression, and Linear Estimation.- 6.6.1 Relationship of the Associative Mapping to Linear Regression.- 6.6.2 Relationship of the Regression Solution to the Linear Estimator.- 6.7 Recursive Computation of the Optimal Associative Mapping.- 6.7.1 Linear Corrective Algorithms.- 6.7.2 Best Exact Solution (Gradient Projection).- 6.7.3 Best Approximate Solution (Regression).- 6.7.4 Recursive Solution in the General Case.- 6.8 Special Cases.- 6.8.1 The Correlation Matrix Memory.- 6.8.2 Relationship Between Conditional Averages and Optimal Estimator.- 7. Pattern Recognition.- 7.1 Discriminant Functions.- 7.2 Statistical Formulation of Pattern Classification.- 7.3 Comparison Methods.- 7.4 The Subspace Methods of Classification.- 7.4.1 The Basic Subspace Method.- 7.4.2 The Learning Subspace Method (LSM).- 7.5 Learning Vector Quantization.- 7.6 Feature Extraction.- 7.7 Clustering.- 7.7.1 Simple Clustering (Optimization Approach).- 7.7.2 Hierarchical Clustering (Taxonomy Approach).- 7.8 Structural Pattern Recognition Methods.- 8. More About Biological Memory.- 8.1 Physiological Foundations of Memory.- 8.1.1 On the Mechanisms of Memory in Biological Systems.- 8.1.2 Structural Features of Some Neural Networks.- 8.1.3 Functional Features of Neurons.- 8.1.4 Modelling of the Synaptic Plasticity.- 8.1.5 Can the Memory Capacity Ensue from Synaptic Changes?.- 8.2 The Unified Cortical Memory Model.- 8.2.1 The Laminar Network Organization.- 8.2.2 On the Roles of Interneurons.- 8.2.3 Representation of Knowledge Over Memory Fields.- 8.2.4 Self-Controlled Operation of Memory.- 8.3 Collateral Reading.- 8.3.1 Physiological Results Relevant to Modelling.- 8.3.2 Related Modelling.- 9. Notes on Neural Computing.- 9.1 First Theoretical Views of Neural Networks.- 9.2 Motives for the Neural Computing Research.- 9.3 What Could the Purpose of the Neural Networks be?.- 9.4 Definitions of Artificial "Neural Computing" and General Notes on Neural Modelling.- 9.5 Are the Biological Neural Functions Localized or Distributed?.- 9.6 Is Nonlinearity Essential to Neural Computing?.- 9.7 Characteristic Differences Between Neural and Digital Computers.- 9.7.1 The Degree of Parallelism of the Neural Networks is Still Higher than that of any "Massively Parallel" Digital Computer.- 9.7.2 Why the Neural Signals Cannot be Approximated by Boolean Variables.- 9.7.3 The Neural Circuits do not Implement Finite Automata.- 9.7.4 Undue Views of the Logic Equivalence of the Brain and Computers on a High Level.- 9.8 "Connectionist Models".- 9.9 How can the Neural Computers be Programmed?.- 10. Optical Associative Memories.- 10.1 Nonholographic Methods.- 10.2 General Aspects of Holographic Memories.- 10.3 A Simple Principle of Holographic Associative Memory.- 10.4 Addressing in Holographic Memories.- 10.5 Recent Advances of Optical Associative Memories.- Bibliography on Pattern Recognition.- References.

8,197 citations

Book
01 Jan 1991
TL;DR: This book is a detailed, logically-developed treatment that covers the theory and uses of collective computational networks, including associative memory, feed forward networks, and unsupervised learning.
Abstract: From the Publisher: This book is a comprehensive introduction to the neural network models currently under intensive study for computational applications. It is a detailed, logically-developed treatment that covers the theory and uses of collective computational networks, including associative memory, feed forward networks, and unsupervised learning. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.

7,518 citations


Network Information
Related Topics (5)
Artificial neural network
207K papers, 4.5M citations
82% related
Robustness (computer science)
94.7K papers, 1.6M citations
78% related
Cluster analysis
146.5K papers, 2.9M citations
76% related
Support vector machine
73.6K papers, 1.7M citations
75% related
Amplifier
163.9K papers, 1.3M citations
75% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023103
2022252
2021149
2020182
2019191
2018187