scispace - formally typeset
Topic

Content-based image retrieval

About: Content-based image retrieval is a(n) research topic. Over the lifetime, 6916 publication(s) have been published within this topic receiving 150696 citation(s). The topic is also known as: CBIR.


Papers
More filters
Journal ArticleDOI
TL;DR: The working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap are discussed, as well as aspects of system engineering: databases, system architecture, and evaluation.
Abstract: Presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for image retrieval systems. Step one of the review is image processing for retrieval sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features, salient points, object and shape features, signs, and structural combinations thereof. Similarity of pictures and objects in pictures is reviewed for each of the feature types, in close connection to the types and means of feedback the user of the systems is capable of giving by interaction. We briefly discuss aspects of system engineering: databases, system architecture, and evaluation. In the concluding section, we present our view on: the driving force of the field, the heritage from computer vision, the influence on computer vision, the role of similarity and of interaction, the need for databases, the problem of evaluation, and the role of the semantic gap.

6,292 citations

Journal ArticleDOI
TL;DR: In this paper, color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models, and they can differentiate among a large number of objects.
Abstract: Computer vision is moving into a new era in which the aim is to develop visual skills for robots that allow them to interact with a dynamic, unconstrained environment. To achieve this aim, new kinds of vision algorithms need to be developed which run in real time and subserve the robot's goals. Two fundamental goals are determining the identity of an object with a known location, and determining the location of a known object. Color can be successfully used for both tasks. This dissertation demonstrates that color histograms of multicolored objects provide a robust, efficient cue for indexing into a large database of models. It shows that color histograms are stable object representations in the presence of occlusion and over change in view, and that they can differentiate among a large number of objects. For solving the identification problem, it introduces a technique called Histogram Intersection, which matches model and image histograms and a fast incremental version of Histogram Intersection which allows real-time indexing into a large database of stored models. It demonstrates techniques for dealing with crowded scenes and with models with similar color signatures. For solving the location problem it introduces an algorithm called Histogram Backprojection which performs this task efficiently in crowded scenes.

5,485 citations

Journal ArticleDOI
TL;DR: Comparisons with other multiresolution texture features using the Brodatz texture database indicate that the Gabor features provide the best pattern retrieval accuracy.
Abstract: Image content based retrieval is emerging as an important research area with application to digital libraries and multimedia databases. The focus of this paper is on the image processing aspects and in particular using texture information for browsing and retrieval of large image data. We propose the use of Gabor wavelet features for texture analysis and provide a comprehensive experimental evaluation. Comparisons with other multiresolution texture features using the Brodatz texture database indicate that the Gabor features provide the best pattern retrieval accuracy. An application to browsing large air photos is illustrated.

3,895 citations

Journal ArticleDOI
TL;DR: Almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation are surveyed, and the spawning of related subfields are discussed, to discuss the adaptation of existing image retrieval techniques to build systems that can be useful in the real world.
Abstract: We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger association of weakly related fields. In this article, we survey almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation, and in the process discuss the spawning of related subfields. We also discuss significant challenges involved in the adaptation of existing image retrieval techniques to build systems that can be useful in the real world. In retrospect of what has been achieved so far, we also conjecture what the future may hold for image retrieval research.

3,334 citations

Journal ArticleDOI
TL;DR: SIMPLIcity (semantics-sensitive integrated matching for picture libraries), an image retrieval system, which uses semantics classification methods, a wavelet-based approach for feature extraction, and integrated region matching based upon image segmentation to improve retrieval.
Abstract: We present here SIMPLIcity (semantics-sensitive integrated matching for picture libraries), an image retrieval system, which uses semantics classification methods, a wavelet-based approach for feature extraction, and integrated region matching based upon image segmentation. An image is represented by a set of regions, roughly corresponding to objects, which are characterized by color, texture, shape, and location. The system classifies images into semantic categories. Potentially, the categorization enhances retrieval by permitting semantically-adaptive searching methods and narrowing down the searching range in a database. A measure for the overall similarity between images is developed using a region-matching scheme that integrates properties of all the regions in the images. The application of SIMPLIcity to several databases has demonstrated that our system performs significantly better and faster than existing ones. The system is fairly robust to image alterations.

2,060 citations

Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
90% related
Feature (computer vision)
128.2K papers, 1.7M citations
88% related
Image segmentation
79.6K papers, 1.8M citations
87% related
Convolutional neural network
74.7K papers, 2M citations
87% related
Deep learning
79.8K papers, 2.1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20225
2021180
2020163
2019224
2018269
2017277