scispace - formally typeset

Topic

Context-adaptive binary arithmetic coding

About: Context-adaptive binary arithmetic coding is a(n) research topic. Over the lifetime, 8254 publication(s) have been published within this topic receiving 170736 citation(s). The topic is also known as: CABAC.
Papers
More filters

Journal ArticleDOI
TL;DR: An overview of the technical features of H.264/AVC is provided, profiles and applications for the standard are described, and the history of the standardization process is outlined.
Abstract: H.264/AVC is newest video coding standard of the ITU-T Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group. The main goals of the H.264/AVC standardization effort have been enhanced compression performance and provision of a "network-friendly" video representation addressing "conversational" (video telephony) and "nonconversational" (storage, broadcast, or streaming) applications. H.264/AVC has achieved a significant improvement in rate-distortion efficiency relative to existing standards. This article provides an overview of the technical features of H.264/AVC, describes profiles and applications for the standard, and outlines the history of the standardization process.

8,302 citations


Journal ArticleDOI
Jacob Ziv1, A. Lempel1Institutions (1)
TL;DR: The proposed concept of compressibility is shown to play a role analogous to that of entropy in classical information theory where one deals with probabilistic ensembles of sequences rather than with individual sequences.
Abstract: Compressibility of individual sequences by the class of generalized finite-state information-lossless encoders is investigated. These encoders can operate in a variable-rate mode as well as a fixed-rate one, and they allow for any finite-state scheme of variable-length-to-variable-length coding. For every individual infinite sequence x a quantity \rho(x) is defined, called the compressibility of x , which is shown to be the asymptotically attainable lower bound on the compression ratio that can be achieved for x by any finite-state encoder. This is demonstrated by means of a constructive coding theorem and its converse that, apart from their asymptotic significance, also provide useful performance criteria for finite and practical data-compression tasks. The proposed concept of compressibility is also shown to play a role analogous to that of entropy in classical information theory where one deals with probabilistic ensembles of sequences rather than with individual sequences. While the definition of \rho(x) allows a different machine for each different sequence to be compressed, the constructive coding theorem leads to a universal algorithm that is asymptotically optimal for all sequences.

3,616 citations


Journal ArticleDOI
Heiko Schwarz1, Detlev Marpe1, Thomas Wiegand1Institutions (1)
TL;DR: An overview of the basic concepts for extending H.264/AVC towards SVC are provided and the basic tools for providing temporal, spatial, and quality scalability are described in detail and experimentally analyzed regarding their efficiency and complexity.
Abstract: With the introduction of the H.264/AVC video coding standard, significant improvements have recently been demonstrated in video compression capability. The Joint Video Team of the ITU-T VCEG and the ISO/IEC MPEG has now also standardized a Scalable Video Coding (SVC) extension of the H.264/AVC standard. SVC enables the transmission and decoding of partial bit streams to provide video services with lower temporal or spatial resolutions or reduced fidelity while retaining a reconstruction quality that is high relative to the rate of the partial bit streams. Hence, SVC provides functionalities such as graceful degradation in lossy transmission environments as well as bit rate, format, and power adaptation. These functionalities provide enhancements to transmission and storage applications. SVC has achieved significant improvements in coding efficiency with an increased degree of supported scalability relative to the scalable profiles of prior video coding standards. This paper provides an overview of the basic concepts for extending H.264/AVC towards SVC. Moreover, the basic tools for providing temporal, spatial, and quality scalability are described in detail and experimentally analyzed regarding their efficiency and complexity.

3,490 citations



Journal ArticleDOI
Thomas Wiegand1, Heiko Schwarz1, Anthony Joch, Faouzi Kossentini2  +1 moreInstitutions (3)
TL;DR: A unified approach to the coder control of video coding standards such as MPEG-2, H.263, MPEG-4, and the draft video coding standard H.264/AVC (advanced video coding) is presented.
Abstract: A unified approach to the coder control of video coding standards such as MPEG-2, H.263, MPEG-4, and the draft video coding standard H.264/AVC (advanced video coding) is presented. The performance of the various standards is compared by means of PSNR and subjective testing results. The results indicate that H.264/AVC compliant encoders typically achieve essentially the same reproduction quality as encoders that are compliant with the previous standards while typically requiring 60% or less of the bit rate.

3,297 citations


Network Information
Related Topics (5)
Feature (computer vision)

128.2K papers, 1.7M citations

87% related
Feature extraction

111.8K papers, 2.1M citations

87% related
Image segmentation

79.6K papers, 1.8M citations

86% related
Convolutional neural network

74.7K papers, 2M citations

84% related
Image processing

229.9K papers, 3.5M citations

83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20221
202110
202038
201934
201865
2017186