scispace - formally typeset
Search or ask a question
Topic

Contourlet

About: Contourlet is a research topic. Over the lifetime, 3533 publications have been published within this topic receiving 38980 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A "true" two-dimensional transform that can capture the intrinsic geometrical structure that is key in visual information is pursued and it is shown that with parabolic scaling and sufficient directional vanishing moments, contourlets achieve the optimal approximation rate for piecewise smooth functions with discontinuities along twice continuously differentiable curves.
Abstract: The limitations of commonly used separable extensions of one-dimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a "true" two-dimensional transform that can capture the intrinsic geometrical structure that is key in visual information. The main challenge in exploring geometry in images comes from the discrete nature of the data. Thus, unlike other approaches, such as curvelets, that first develop a transform in the continuous domain and then discretize for sampled data, our approach starts with a discrete-domain construction and then studies its convergence to an expansion in the continuous domain. Specifically, we construct a discrete-domain multiresolution and multidirection expansion using nonseparable filter banks, in much the same way that wavelets were derived from filter banks. This construction results in a flexible multiresolution, local, and directional image expansion using contour segments, and, thus, it is named the contourlet transform. The discrete contourlet transform has a fast iterated filter bank algorithm that requires an order N operations for N-pixel images. Furthermore, we establish a precise link between the developed filter bank and the associated continuous-domain contourlet expansion via a directional multiresolution analysis framework. We show that with parabolic scaling and sufficient directional vanishing moments, contourlets achieve the optimal approximation rate for piecewise smooth functions with discontinuities along twice continuously differentiable curves. Finally, we show some numerical experiments demonstrating the potential of contourlets in several image processing applications.

3,948 citations

Journal ArticleDOI
TL;DR: This paper proposes a design framework based on the mapping approach, that allows for a fast implementation based on a lifting or ladder structure, and only uses one-dimensional filtering in some cases.
Abstract: In this paper, we develop the nonsubsampled contourlet transform (NSCT) and study its applications. The construction proposed in this paper is based on a nonsubsampled pyramid structure and nonsubsampled directional filter banks. The result is a flexible multiscale, multidirection, and shift-invariant image decomposition that can be efficiently implemented via the a trous algorithm. At the core of the proposed scheme is the nonseparable two-channel nonsubsampled filter bank (NSFB). We exploit the less stringent design condition of the NSFB to design filters that lead to a NSCT with better frequency selectivity and regularity when compared to the contourlet transform. We propose a design framework based on the mapping approach, that allows for a fast implementation based on a lifting or ladder structure, and only uses one-dimensional filtering in some cases. In addition, our design ensures that the corresponding frame elements are regular, symmetric, and the frame is close to a tight one. We assess the performance of the NSCT in image denoising and enhancement applications. In both applications the NSCT compares favorably to other existing methods in the literature

1,900 citations

Journal ArticleDOI
TL;DR: A general image fusion framework by combining MST and SR to simultaneously overcome the inherent defects of both the MST- and SR-based fusion methods is presented and experimental results demonstrate that the proposed fusion framework can obtain state-of-the-art performance.

952 citations

Journal ArticleDOI
TL;DR: A novel image fusion algorithm based on the nonsubsampled contourlet transform (NSCT) is proposed, aiming at solving the fusion problem of multifocus images, and significantly outperforms the traditional discrete wavelets transform-based and the discrete wavelet frame transform- based image fusion methods.

593 citations

Journal ArticleDOI
TL;DR: The evaluation of the pan-sharpened images using global validation indexes reveal that the adaptive PCA approach helps reducing the spectral distortion, and its merger with contourlets provides better fusion results.
Abstract: High correlation among the neighboring pixels both spatially and spectrally in a multispectral image makes it necessary to use an efficient data transformation approach before performing pan-sharpening. Wavelets and principal component analysis (PCA) methods have been a popular choice for spatial and spectral transformations, respectively. Current PCA-based pan-sharpening methods make an assumption that the first principal component (PC) of high variance is an ideal choice for replacing or injecting it with high spatial details from the high-resolution histogram-matched panchromatic (PAN) image. This paper presents a combined adaptive PCA-contourlet approach for pan-sharpening, where the adaptive PCA is used to reduce the spectral distortion and the use of nonsubsampled contourlets for spatial transformation in pan-sharpening is incorporated to overcome the limitation of the wavelets in representing the directional information efficiently and capturing intrinsic geometrical structures of the objects. The efficiency of the presented method is tested by performing pan-sharpening of the high-resolution (IKONOS and QuickBird) and the medium-resolution (Landsat-7 Enhanced Thematic Mapper Plus) datasets. The evaluation of the pan-sharpened images using global validation indexes reveal that the adaptive PCA approach helps reducing the spectral distortion, and its merger with contourlets provides better fusion results.

587 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
89% related
Image processing
229.9K papers, 3.5M citations
85% related
Convolutional neural network
74.7K papers, 2M citations
84% related
Deep learning
79.8K papers, 2.1M citations
82% related
Artificial neural network
207K papers, 4.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202336
202299
202175
2020109
2019155
2018164