scispace - formally typeset
Search or ask a question
Topic

Contourlet

About: Contourlet is a research topic. Over the lifetime, 3533 publications have been published within this topic receiving 38980 citations.


Papers
More filters
Proceedings ArticleDOI
06 Oct 2009
TL;DR: This paper presents a novel design of a Discrete Shearlet Transform, that can have a redundancy factor of 2.6, independent of the number of orientation subbands, and that has many interesting properties, such as shift-invariance and self-invertability.
Abstract: Recently, there has been a huge interest in multiresolution representations that also perform a multidirectional analysis. The Shearlet transform provides both a multiresolution analysis (such as the wavelet transform), and at the same time an optimally sparse image-independent representation for images containing edges. Existing discrete implementations of the Shearlet transform havemainly focused on specific applications, such as edge detection or denoising, and were not designed with a low redundancy in mind (the redundancy factor is typically larger than the number of orientation subbands in the finest scale). In this paper, we present a novel design of a Discrete Shearlet Transform, that can have a redundancy factor of 2.6, independent of the number of orientation subbands, and that has many interesting properties, such as shift-invariance and self-invertability. This transform can be used in a wide range of applications. Experiments are provided to show the improved characteristics of the transform.

31 citations

Journal ArticleDOI
TL;DR: The proposed nonblind multiresolution watermarking method can embed considerable payload, while providing good perceptual transparency and resistance to many attacks, it is a suitable algorithm for fingerprinting applications.
Abstract: We propose a new nonblind multiresolution watermarking method for still images based on the contourlet transform (CT). In our approach, the watermark is a grayscale image which is embedded into the highest frequency subband of the host image in its contourlet domain. We demonstrate that in comparison to other methods, this method enables us to embed more amounts of data into the directional subbands of the host image without degrading its perceptibility. The experimental results show robustness against several common watermarking attacks such as compression, adding noise, filtering, and geometrical transformations. Since the proposed approach can embed considerable payload, while providing good perceptual transparency and resistance to many attacks, it is a suitable algorithm for fingerprinting applications.

31 citations

Journal ArticleDOI
TL;DR: This paper first proposes an objective reduced-reference image quality evaluation metric based on contourlet transform and demonstrates that this new objective metric achieves consistent imagequality evaluation results with what gained by subjective evaluation.

31 citations

Journal ArticleDOI
TL;DR: A robust retinal image enhancement algorithm via a dual-tree complex wavelet transform (DTCWT) and morphology-based method and the experimental results show that the proposed approach can achieve better results, and might be helpful for vessel segmentation.
Abstract: Retinal image processing is very important in the field of clinical medicine. As the first step in retinal image processing, image enhancement is essential. Because the details of a retinal image are complex and difficult to enhance, we present a robust retinal image enhancement algorithm via a dual-tree complex wavelet transform (DTCWT) and morphology-based method in this paper. To begin with, we utilize the pre-processing method to the captured retinal images. Then, the DTCWT is applied to decompose the gray retinal image to obtain high-pass subbands and low-pass subbands. Then, a Contourlet-based enhancement method is applied to the high-pass subbands. For the low-pass subbands, we improve the morphology top-hat transform by adding dynamic multi-scale parameters to achieve an equivalent percentage enhancement and at the same time achieve multi-scale transforms in multiple directions. Finally, we develop the inverse DTCWT method to obtain the enhanced retinal image after processing the low-frequency subimages and high-frequency subimages. We compare this approach with enhancement based on the adaptive unsharp masking, histogram equalization, and multi-scale retinex. We present the test results of our algorithm on 440 retinal images from the DRIVE and the STARE databases. The experimental results show that the proposed approach can achieve better results, and might be helpful for vessel segmentation.

31 citations

Journal ArticleDOI
TL;DR: It is revealed that the proposed image fusion technique outperforms the existing image fusion techniques in terms of quantitative and qualitative outcomes of the images.
Abstract: Multimodal medical image fusion is a powerful tool for diagnosing diseases in medical field. The main objective is to capture the relevant information from input images into a single output image, which plays an important role in clinical applications. In this paper, an image fusion technique for the fusion of multimodal medical images is proposed based on Non-Subsampled Contourlet Transform. The proposed technique uses the Non-Subsampled Contourlet Transform (NSCT) to decompose the images into lowpass and highpass subbands. The lowpass and highpass subbands are fused by using mean based and variance based fusion rules. The reconstructed image is obtained by taking Inverse Non-Subsampled Contourlet Transform (INSCT) on fused subbands. The experimental results on six pairs of medical images are compared in terms of entropy, mean, standard deviation, QAB/F as performance parameters. It reveals that the proposed image fusion technique outperforms the existing image fusion techniques in terms of quantitative and qualitative outcomes of the images. The percentage improvement in entropy is 0% - 40%, mean is 3% - 42%, standard deviation is 1% - 42%, QAB/Fis 0.4% - 48% in proposed method comparing to conventional methods for six pairs of medical images.

30 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
89% related
Image processing
229.9K papers, 3.5M citations
85% related
Convolutional neural network
74.7K papers, 2M citations
84% related
Deep learning
79.8K papers, 2.1M citations
82% related
Artificial neural network
207K papers, 4.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202336
202299
202175
2020109
2019155
2018164