scispace - formally typeset
Search or ask a question
Topic

Contourlet

About: Contourlet is a research topic. Over the lifetime, 3533 publications have been published within this topic receiving 38980 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Experimental results demonstrate that the proposed hybrid multifocus image fusion method is better than various existing transform-based fusion methods, including gradient pyramid transform, discrete wavelet transform, NSCT, and a spatial-based method, in terms of both subjective and objective evaluations.
Abstract: To overcome the difficulties of sub-band coefficients selection in multiscale transform domain-based image fusion and solve the problem of block effects suffered by spatial domain-based image fusion, this paper presents a novel hybrid multifocus image fusion method. First, the source multifocus images are decomposed using the nonsubsampled contourlet transform (NSCT). The low-frequency sub-band coefficients are fused by the sum-modified-Laplacian-based local visual contrast, whereas the high-frequency sub-band coefficients are fused by the local Log-Gabor energy. The initial fused image is subsequently reconstructed based on the inverse NSCT with the fused coefficients. Second, after analyzing the similarity between the previous fused image and the source images, the initial focus area detection map is obtained, which is used for achieving the decision map obtained by employing a mathematical morphology postprocessing technique. Finally, based on the decision map, the final fused image is obtained by selecting the pixels in the focus areas and retaining the pixels in the focus region boundary as their corresponding pixels in the initial fused image. Experimental results demonstrate that the proposed method is better than various existing transform-based fusion methods, including gradient pyramid transform, discrete wavelet transform, NSCT, and a spatial-based method, in terms of both subjective and objective evaluations.

167 citations

Journal ArticleDOI
TL;DR: An effective color medical image fusion scheme is given in this paper that can inhibit color distortion to a large extent and produce an improved visual effect.
Abstract: Multimodal medical image fusion plays a vital role in different clinical imaging sensor applications. This paper presents a novel multimodal medical image fusion method that adopts a multiscale geometric analysis of the nonsubsampled contourlet transform (NSCT) with type-2 fuzzy logic techniques. First, the NSCT was performed on preregistered source images to obtain their high- and low-frequency subbands. Next, an effective type-2 fuzzy logic-based fused rule is proposed for fusion of the high-frequency subbands. In the presented fusion approach, the local type-2 fuzzy entropy is introduced to automatically select high-frequency coefficients. However, for the low-frequency subbands, they were fused by a local energy algorithm based on the corresponding image’s local features. Finally, the fused image was constructed by the inverse NSCT with all composite subbands. Both subjective and objective evaluations showed better contrast, accuracy, and versatility in the proposed approach compared with state-of-the-art methods. Besides, an effective color medical image fusion scheme is also given in this paper that can inhibit color distortion to a large extent and produce an improved visual effect.

164 citations

Journal ArticleDOI
TL;DR: Experimental results demonstrate that the proposed algorithm can significantly improve image fusion performance, accomplish notable target information and high contrast, simultaneously preserve rich details information, and excel other typical current methods in both objective evaluation criteria and visual effect.

161 citations

Journal ArticleDOI
TL;DR: A two-stage multimodal fusion framework using the cascaded combination of stationary wavelet transform (SWT) and non sub-sampled Contourlet Transform (NSCT) domains for images acquired using two distinct medical imaging sensor modalities is presented.
Abstract: Multimodal medical image fusion is effectuated to minimize the redundancy while augmenting the necessary information from the input images acquired using different medical imaging sensors. The sole aim is to yield a single fused image, which could be more informative for an efficient clinical analysis. This paper presents a two-stage multimodal fusion framework using the cascaded combination of stationary wavelet transform (SWT) and non sub-sampled Contourlet transform (NSCT) domains for images acquired using two distinct medical imaging sensor modalities (i.e., magnetic resonance imaging and computed tomography scan). The major advantage of using a cascaded combination of SWT and NSCT is to improve upon the shift variance, directionality, and phase information in the finally fused image. The first stage employs a principal component analysis algorithm in SWT domain to minimize the redundancy. Maximum fusion rule is then applied in NSCT domain at second stage to enhance the contrast of the diagnostic features. A quantitative analysis of fused images is carried out using dedicated fusion metrics. The fusion responses of the proposed approach are also compared with other state-of-the-art fusion approaches; depicting the superiority of the obtained fusion results.

160 citations

Journal ArticleDOI
TL;DR: Visual and statistical analyses show that the quality of fused image can be significantly improved over that of typical image quality assessment metrics in terms of structural similarity, peak-signal-to-noise ratio, standard deviation, and tone mapped image quality index metrics.

157 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
89% related
Image processing
229.9K papers, 3.5M citations
85% related
Convolutional neural network
74.7K papers, 2M citations
84% related
Deep learning
79.8K papers, 2.1M citations
82% related
Artificial neural network
207K papers, 4.5M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202336
202299
202175
2020109
2019155
2018164