scispace - formally typeset
Search or ask a question
Topic

Contrast (vision)

About: Contrast (vision) is a research topic. Over the lifetime, 10379 publications have been published within this topic receiving 221480 citations.


Papers
More filters
Journal ArticleDOI
06 May 1988-Science
TL;DR: Perceptual experiments can be designed to ask which subdivisions of the system are responsible for particular visual abilities, such as figure/ground discrimination or perception of depth from perspective or relative movement--functions that might be difficult to deduce from single-cell response properties.
Abstract: Anatomical and physiological observations in monkeys indicate that the primate visual system consists of several separate and independent subdivisions that analyze different aspects of the same retinal image: cells in cortical visual areas 1 and 2 and higher visual areas are segregated into three interdigitating subdivisions that differ in their selectivity for color, stereopsis, movement, and orientation. The pathways selective for form and color seem to be derived mainly from the parvocellular geniculate subdivisions, the depth- and movement-selective components from the magnocellular. At lower levels, in the retina and in the geniculate, cells in these two subdivisions differ in their color selectivity, contrast sensitivity, temporal properties, and spatial resolution. These major differences in the properties of cells at lower levels in each of the subdivisions led to the prediction that different visual functions, such as color, depth, movement, and form perception, should exhibit corresponding differences. Human perceptual experiments are remarkably consistent with these predictions. Moreover, perceptual experiments can be designed to ask which subdivisions of the system are responsible for particular visual abilities, such as figure/ground discrimination or perception of depth from perspective or relative movement--functions that might be difficult to deduce from single-cell response properties.

3,185 citations

Journal ArticleDOI
TL;DR: The contrast thresholds of a variety of grating patterns have been measured over a wide range of spatial frequencies and the results show clear patterns of uniformity in the response to grating noise.
Abstract: 1. The contrast thresholds of a variety of grating patterns have been measured over a wide range of spatial frequencies.2. Contrast thresholds for the detection of gratings whose luminance profiles are sine, square, rectangular or saw-tooth waves can be simply related using Fourier theory.3. Over a wide range of spatial frequencies the contrast threshold of a grating is determined only by the amplitude of the fundamental Fourier component of its wave form.4. Gratings of complex wave form cannot be distinguished from sine-wave gratings until their contrast has been raised to a level at which the higher harmonic components reach their independent threshold.5. These findings can be explained by the existence within the nervous system of linearly operating independent mechanisms selectively sensitive to limited ranges of spatial frequencies.

3,073 citations

Book ChapterDOI

2,671 citations

Journal ArticleDOI
TL;DR: Spatial summation within cat retinal receptive fields was studied by recording from optic‐tract fibres the responses of ganglion cells to grating patterns whose luminance perpendicular to the bars varied sinusoidally about the mean level.
Abstract: 1. Spatial summation within cat retinal receptive fields was studied by recording from optic-tract fibres the responses of ganglion cells to grating patterns whose luminance perpendicular to the bars varied sinusoidally about the mean level. 2. Summation over the receptive fields of some cells (X-cells) was found to be approximately linear, while for other cells (Y-cells) summation was very non-linear. 3. The mean discharge frequency of Y-cells (unlike that of X-cells) was greatly increased when grating patterns drifted across their receptive fields. 4. In twenty-one X-cells the relation between the contrast and spatial frequency of drifting sinusoidal gratings which evoked the same small response was measured. In every case it was found that the reciprocal of this relation, the contrast sensitivity function, could be satisfactorily described by the difference of two Gaussian functions. 5. This finding supports the hypothesis that the sensitivities of the antagonistic centre and surround summating regions of ganglion cell receptive fields fall off as Gaussian functions of the distance from the field centre. 6. The way in which the sensitivity of an X-cell for a contrast-edge pattern varied with the distance of the edge from the receptive field centre was determined and found to be consistent with the cell's measured contrast sensitivity function. 7. Reducing the retinal illumination produced changes in the contrast sensitivity function of an X-cell which suggested that the diameters of the summating regions of the receptive field increased while the surround region became relatively ineffective.

2,426 citations

Journal ArticleDOI
TL;DR: The results indicate that neural activity in MT contributes selectively to the perception of motion.
Abstract: Physiological experiments indicate that the middle temporal visual area (MT) of primates plays a prominent role in the cortical analysis of visual motion. We investigated the role of MT in visual perception by examining the effect of chemical lesions of MT on psychophysical thresholds. We trained rhesus monkeys on psychophysical tasks that enabled us to assess their sensitivity to motion and to contrast. For motion psychophysics, we employed a dynamic random dot display that permitted us to vary the intensity of a motion signal in the midst of masking motion noise. We measured the threshold intensity for which the monkey could successfully complete a direction discrimination. In the contrast task, we measured the threshold contrast for which the monkeys could successfully discriminate the orientation of stationary gratings. Injections of ibotenic acid into MT caused striking elevations in motion thresholds, but had little or no effect on contrast thresholds. The results indicate that neural activity in MT contributes selectively to the perception of motion.

1,605 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,864
20223,760
2021413
2020329
2019354