scispace - formally typeset
Search or ask a question
Topic

Contrast (vision)

About: Contrast (vision) is a research topic. Over the lifetime, 10379 publications have been published within this topic receiving 221480 citations.


Papers
More filters
Journal ArticleDOI
01 Aug 2004-Displays
TL;DR: In this article, the authors used a wide range of binocular image imperfections that are representative for commonly encountered optical errors (spatial distortions: shifts, magnification, rotation, keystone), imperfect filters (photometric asymmetries: luminance, color, contrast, crosstalk), and stereoscopic disparities).

584 citations

Journal ArticleDOI
01 Jul 2006
TL;DR: An automatic, real-time video and image abstraction framework that abstracts imagery by modifying the contrast of visually important features, namely luminance and color opponency is presented and finds that participants are faster at naming abstracted faces of known persons compared to photographs.
Abstract: We present an automatic, real-time video and image abstraction framework that abstracts imagery by modifying the contrast of visually important features, namely luminance and color opponency. We reduce contrast in low-contrast regions using an approximation to anisotropic diffusion, and artificially increase contrast in higher contrast regions with difference-of-Gaussian edges. The abstraction step is extensible and allows for artistic or data-driven control. Abstracted images can optionally be stylized using soft color quantization to create cartoon-like effects with good temporal coherence. Our framework design is highly parallel, allowing for a GPU-based, real-time implementation. We evaluate the effectiveness of our abstraction framework with a user-study and find that participants are faster at naming abstracted faces of known persons compared to photographs. Participants are also better at remembering abstracted images of arbitrary scenes in a memory task.

576 citations

Journal ArticleDOI
TL;DR: In this article, an approach is proposed which consists in computing the ratio between the gradient of the visible edges between the image before and after contrast restoration, which is an indicator of visibility enhancement.
Abstract: The contrast of outdoor images acquired under adverse weather conditions, especially foggy weather, is altered by the scattering of daylight by atmospheric particles. As a consequence, different methods have been designed to restore the contrast of these images. However, there is a lack of methodology to assess the performances of the methods or to rate them. Unlike image quality assessment or image restoration areas, there is no easy way to have a reference image, which makes the problem not straightforward to solve. In this paper, an approach is proposed which consists in computing the ratio between the gradient of the visible edges between the image before and after contrast restoration. In this way, an indicator of visibility enhancement is provided based on the concept of visibility level, commonly used in lighting engineering. Finally, the methodology is applied to contrast enhancement assessment and to the comparison of tone-mapping operators.

555 citations

Journal ArticleDOI
TL;DR: It is argued that spatial frequency channels in the visual cortex are organized to compensate for earlier attenuation, and achieves a dramatic 'deblurring' of the image, and optimizes the clarity of vision.
Abstract: The perception of contrast was measured in humans by a technique of subjective contrast-matching, and was compared with contrast sensitivity as defined by threshold measures. 2. Contrast-matching between different spatial frequencies was performed correctly (especially at frequencies above 5 c/deg) despite the attenuation by optical and neural factors which cause large differences in contrast thresholds. 3. Contrast-matching between single lines of different widths was also veridical, and was not limited by the spatial integration (Ricco's Law) present at threshold. Adaptation to gratings altered the appearance of lines, and this could be best understood in Fourier terms. 4. The generality of these results was shown by matching the contrast of pictures which had been filtered so that each contained a one octave band of spatial frequencies. 5. Within the limits imposed by threshold and resolution, contrast-matching was largely independent of luminance and position on the retina. 6. Six out of eleven astigmatic observers showed considerable suprathreshold compensation for their orientation-specific neural deficit in contrast sensitivity. 7. These results define a new property of vision: contrast constancy. It is argued that spatial frequency channels in the visual cortex are organized to compensate for earlier attenuation. This achieves a dramatic 'deblurring' of the image, and optimizes the clarity of vision.

544 citations


Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,864
20223,760
2021413
2020329
2019354