scispace - formally typeset
Search or ask a question
Topic

Control reconfiguration

About: Control reconfiguration is a research topic. Over the lifetime, 22423 publications have been published within this topic receiving 334217 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Accuracy analysis and the test results show that estimation methods can be used in searches to reconfigure a given system even if the system is not well compensated and reconfiguring involves load transfer between different substations.
Abstract: A general formulation of the feeder reconfiguration problem for loss reduction and load balancing is given, and a novel solution method is presented. The solution uses a search over different radial configurations created by considering switchings of the branch exchange type. To guide the search, two different power flow approximation methods with varying degrees of accuracy have been developed and tested. The methods are used to calculate the new power flow in the system after a branch exchange and they make use of the power flow equations developed for radial distribution systems. Both accuracy analysis and the test results show that estimation methods can be used in searches to reconfigure a given system even if the system is not well compensated and reconfiguring involves load transfer between different substations. For load balancing, a load balance index is defined and it is shown that the search and power flow estimation methods developed for power loss reduction can also be used for load balancing since the two problems are similar. >

3,985 citations

Proceedings ArticleDOI
03 Nov 2004
TL;DR: B-MAC's flexibility results in better packet delivery rates, throughput, latency, and energy consumption than S-MAC, and the need for flexible protocols to effectively realize energy efficient sensor network applications is illustrated.
Abstract: We propose B-MAC, a carrier sense media access protocol for wireless sensor networks that provides a flexible interface to obtain ultra low power operation, effective collision avoidance, and high channel utilization. To achieve low power operation, B-MAC employs an adaptive preamble sampling scheme to reduce duty cycle and minimize idle listening. B-MAC supports on-the-fly reconfiguration and provides bidirectional interfaces for system services to optimize performance, whether it be for throughput, latency, or power conservation. We build an analytical model of a class of sensor network applications. We use the model to show the effect of changing B-MAC's parameters and predict the behavior of sensor network applications. By comparing B-MAC to conventional 802.11-inspired protocols, specifically SMAC, we develop an experimental characterization of B-MAC over a wide range of network conditions. We show that B-MAC's flexibility results in better packet delivery rates, throughput, latency, and energy consumption than S-MAC. By deploying a real world monitoring application with multihop networking, we validate our protocol design and model. Our results illustrate the need for flexible protocols to effectively realize energy efficient sensor network applications.

3,631 citations

Journal ArticleDOI
TL;DR: The state machine approach is a general method for implementing fault-tolerant services in distributed systems and protocols for two different failure models—Byzantine and fail stop are described.
Abstract: The state machine approach is a general method for implementing fault-tolerant services in distributed systems. This paper reviews the approach and describes protocols for two different failure models—Byzantine and fail stop. Systems reconfiguration techniques for removing faulty components and integrating repaired components are also discussed.

2,559 citations

Proceedings ArticleDOI
01 Dec 2012
TL;DR: An introduction to event- and self-triggered control systems where sensing and actuation is performed when needed and how these control strategies can be implemented using existing wireless communication technology is shown.
Abstract: Recent developments in computer and communication technologies have led to a new type of large-scale resource-constrained wireless embedded control systems. It is desirable in these systems to limit the sensor and control computation and/or communication to instances when the system needs attention. However, classical sampled-data control is based on performing sensing and actuation periodically rather than when the system needs attention. This paper provides an introduction to event- and self-triggered control systems where sensing and actuation is performed when needed. Event-triggered control is reactive and generates sensor sampling and control actuation when, for instance, the plant state deviates more than a certain threshold from a desired value. Self-triggered control, on the other hand, is proactive and computes the next sampling or actuation instance ahead of time. The basics of these control strategies are introduced together with a discussion on the differences between state feedback and output feedback for event-triggered control. It is also shown how event- and self-triggered control can be implemented using existing wireless communication technology. Some applications to wireless control in process industry are discussed as well.

1,642 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
85% related
Software
130.5K papers, 2M citations
85% related
Wireless sensor network
142K papers, 2.4M citations
84% related
Network packet
159.7K papers, 2.2M citations
83% related
Optimization problem
96.4K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023784
20221,765
2021778
2020958
2019976
20181,060