scispace - formally typeset
Search or ask a question
Topic

Control reconfiguration

About: Control reconfiguration is a research topic. Over the lifetime, 22423 publications have been published within this topic receiving 334217 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The result of the performance evaluation indicates that the proposed routing scheme can detect the links that are vulnerable to a failure under the current traffic demand pattern and adjust a flow so as to improve the network survivability level.
Abstract: The advent of high-capacity optical fiber has increased the impact of a network failure in high-speed networks since a large volume of data can be lost even in a short outage. Self-healing algorithms have previosly been proposed to achieve fast restoration from a failure, but their success greatly depends on how traffic is distributed and how spare capacity is dimensioned over the network when a failure happens. Thus, in order to offer better network survivability, it is crucial that a network manager realizes a restorable traffic assignment in response to changing traffic demand and facility network configuration. The authors address the problem of virtual path routing for survivable asynchronous transfer mode (ATM) networks. An algorithm is developed to find a virtual path configuration and bandwidth assignment that minimizes the expected amount of lost flow upon restoration from a network failure. The concept of two-step restoration is introduced to achieve fast restoration as well as optimal reconfiguration. The problem can be formulated as a nonlinear, nonsmooth multicommodity flow problem with linear constraints. A modified flow deviation method is developed to obtain a near-optimal solution, where premature convergence to a nonsmooth point could be avoided by adjusting an optimization parameter. The result of the performance evaluation indicates that the proposed routing scheme can detect the links that are vulnerable to a failure under the current traffic demand pattern and adjust a flow so as to improve the network survivability level.

105 citations

Journal ArticleDOI
TL;DR: A serial fault emulation algorithm enhanced by two speed-up techniques that uses the field programmable gate array (FPGA)-based emulation system for fault grading and shows that this approach could be several orders of magnitude faster than the existing software approaches for large sequential designs.
Abstract: In this paper, we introduce a method that uses the field programmable gate array (FPGA)-based emulation system for fault grading. The real-time simulation capability of a hardware emulator could significantly improve the performance of fault grading, which is one of the most time consuming tasks in the circuit design and test process. We employ a serial fault emulation algorithm enhanced by two speed-up techniques. First, a set of independent faults can be injected and emulated at the same time. Second, multiple dependent faults can be simultaneously injected within a single FPGA-configuration by adding extra circuitry. Because the reconfiguration time of mapping the numerous faulty circuits into the FPGA's is pure overhead and could be the bottleneck of the entire process, using extra circuitry for injecting a large number of faults can reduce the number of FPGA-reconfigurations and, thus, improving the performance significantly. In addition, we address the issue of handling potentially detected faults in this hardware emulation environment by using the dual-railed logic. The performance estimation shows that this approach could be several orders of magnitude faster than the existing software approaches for large sequential designs.

104 citations

Journal ArticleDOI
TL;DR: A reconfigurable distributed virtual machine (RDVM) infrastructure for networked computing systems is designed, and a failure-aware node selection strategies for the construction and reconfiguration of RDVMs are proposed.

104 citations

Journal ArticleDOI
TL;DR: In this article, a case study of the transition from traditional factories to mass production in America (1850-1930) is presented, showing that mass production was the last step in a much longer reconfiguration process involving cumulative changes in machine tools, building materials, materials handling technologies, power generation, and power distribution technologies.

104 citations

Proceedings ArticleDOI
27 Apr 2003
TL;DR: An efficient technique for test data volume reduction based on the shared scan-in (Illinois Scan) architecture and the scan chain reconfiguration (Dynamic scan) architecture is defined and the results demonstrate the efficiency of the proposed architecture for real-industrial circuits.
Abstract: In this paper, an efficient technique for test data volume reduction based on the shared scan-in (Illinois Scan) architecture and the scan chain reconfiguration (Dynamic Scan) architecture is defined. The composite architecture is created with analysis that relies on the compatibility relation of scan chains. Topological analysis and compatibility analysis are used to maximize gains in test data volume and test application time. The goal of the proposed synthesis procedure is to test all detectable faults in broadcast test mode using minimum scan-chain configurations. As a result, more aggressive sharing of scan inputs can be applied for test data volume and test application time reduction. The experimental results demonstrate the efficiency of the proposed architecture for real-industrial circuits.

104 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
85% related
Software
130.5K papers, 2M citations
85% related
Wireless sensor network
142K papers, 2.4M citations
84% related
Network packet
159.7K papers, 2.2M citations
83% related
Optimization problem
96.4K papers, 2.1M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023784
20221,765
2021778
2020958
2019976
20181,060