scispace - formally typeset
Search or ask a question

Showing papers on "Control theory published in 2007"


Journal ArticleDOI
05 Mar 2007
TL;DR: This work reviews several recent results on estimation, analysis, and controller synthesis for NCSs, and addresses channel limitations in terms of packet-rates, sampling, network delay, and packet dropouts.
Abstract: Networked control systems (NCSs) are spatially distributed systems for which the communication between sensors, actuators, and controllers is supported by a shared communication network. We review several recent results on estimation, analysis, and controller synthesis for NCSs. The results surveyed address channel limitations in terms of packet-rates, sampling, network delay, and packet dropouts. The results are presented in a tutorial fashion, comparing alternative methodologies

3,748 citations


Journal ArticleDOI
TL;DR: This note investigates a simple event-triggered scheduler based on the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant and shows how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements.
Abstract: In this note, we revisit the problem of scheduling stabilizing control tasks on embedded processors. We start from the paradigm that a real-time scheduler could be regarded as a feedback controller that decides which task is executed at any given instant. This controller has for objective guaranteeing that (control unrelated) software tasks meet their deadlines and that stabilizing control tasks asymptotically stabilize the plant. We investigate a simple event-triggered scheduler based on this feedback paradigm and show how it leads to guaranteed performance thus relaxing the more traditional periodic execution requirements.

3,695 citations


Journal ArticleDOI
TL;DR: In this paper, the authors developed a model for autonomous operation of inverter-based micro-grids, where each sub-module is modeled in state-space form and all are combined together on a common reference frame.
Abstract: The analysis of the small-signal stability of conventional power systems is well established, but for inverter based microgrids there is a need to establish how circuit and control features give rise to particular oscillatory modes and which of these have poor damping. This paper develops the modeling and analysis of autonomous operation of inverter-based microgrids. Each sub-module is modeled in state-space form and all are combined together on a common reference frame. The model captures the detail of the control loops of the inverter but not the switching action. Some inverter modes are found at relatively high frequency and so a full dynamic model of the network (rather than an algebraic impedance model) is used. The complete model is linearized around an operating point and the resulting system matrix is used to derive the eigenvalues. The eigenvalues (termed "modes") indicate the frequency and damping of oscillatory components in the transient response. A sensitivity analysis is also presented which helps identifying the origin of each of the modes and identify possible feedback signals for design of controllers to improve the system stability. With experience it is possible to simplify the model (reduce the order) if particular modes are not of interest as is the case with synchronous machine models. Experimental results from a microgrid of three 10-kW inverters are used to verify the results obtained from the model

2,482 citations


Journal ArticleDOI
05 Mar 2007
TL;DR: In this paper, the authors consider control and estimation problems where the sensor signals and the actuator signals are transmitted to various subsystems over a network and characterize the impact of the network reliability on the performance of the feedback loop.
Abstract: This paper considers control and estimation problems where the sensor signals and the actuator signals are transmitted to various subsystems over a network. In contrast to traditional control and estimation problems, here the observation and control packets may be lost or delayed. The unreliability of the underlying communication network is modeled stochastically by assigning probabilities to the successful transmission of packets. This requires a novel theory which generalizes classical control/estimation paradigms. The paper offers the foundations of such a novel theory. The central contribution is to characterize the impact of the network reliability on the performance of the feedback loop. Specifically, it is shown that for network protocols where successful transmissions of packets is acknowledged at the receiver (e.g., TCP-like protocols), there exists a critical threshold of network reliability (i.e., critical probabilities for the successful delivery of packets), below which the optimal controller fails to stabilize the system. Further, for these protocols, the separation principle holds and the optimal LQG controller is a linear function of the estimated state. In stark contrast, it is shown that when there is no acknowledgement of successful delivery of control packets (e.g., UDP-like protocols), the LQG optimal controller is in general nonlinear. Consequently, the separation principle does not hold in this circumstance

1,390 citations


Journal ArticleDOI
TL;DR: The effectiveness of the proposed MPC formulation is demonstrated by simulation and experimental tests up to 21 m/s on icy roads, and two approaches with different computational complexities are presented.
Abstract: In this paper, a model predictive control (MPC) approach for controlling an active front steering system in an autonomous vehicle is presented. At each time step, a trajectory is assumed to be known over a finite horizon, and an MPC controller computes the front steering angle in order to follow the trajectory on slippery roads at the highest possible entry speed. We present two approaches with different computational complexities. In the first approach, we formulate the MPC problem by using a nonlinear vehicle model. The second approach is based on successive online linearization of the vehicle model. Discussions on computational complexity and performance of the two schemes are presented. The effectiveness of the proposed MPC formulation is demonstrated by simulation and experimental tests up to 21 m/s on icy roads

1,184 citations


Proceedings ArticleDOI
20 Aug 2007
TL;DR: In this paper, a theoretical development is presented, and validated through both thrust test stand measurements and vehicle flight tests using the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control (STARMAC) quadrotor helicopter.
Abstract: Quadrotor helicopters are emerging as a popular platform for unmanned aerial vehicle (UAV) research, due to the simplicity of their construction and maintenance, their ability to hover, and their vertical take o and landing (VTOL) capability. Current designs have often considered only nominal operating conditions for vehicle control design. This work seeks to address issues that arise when deviating significantly from the hover flight regime. Aided by well established research for helicopter flight control, three separate aerodynamic eects are investigated as they pertain to quadrotor flight, due to vehicular velocity, angle of attack, and airframe design. They cause moments that aect attitude control, and thrust variation that aects altitude control. Where possible, a theoretical development is first presented, and is then validated through both thrust test stand measurements and vehicle flight tests using the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control (STARMAC) quadrotor helicopter. The results enabled improved controller performance.

1,074 citations


Book ChapterDOI
01 Jan 2007
TL;DR: This chapter describes one of the most popular predictive control algorithms: Generalized Predictive Control (GPC), developed in detail, showing the general procedure to obtain the control law and its most outstanding characteristics.
Abstract: This chapter describes one of the most popular predictive control algorithms: Generalized Predictive Control (GPC). The method is developed in detail, showing the general procedure to obtain the control law and its most outstanding characteristics. The original algorithm is extended to include the cases of measurable disturbances and change in the predictor. Close derivations of this controller such as CRHPC and Stable GPC are also treated here, illustrating the way they can be implemented.

946 citations


Journal ArticleDOI
TL;DR: In this paper, a single controller can pin a coupled complex network to a homogeneous solution, and sufficient conditions are presented to guarantee the convergence of the pinning process locally and globally.
Abstract: In this paper, without assuming symmetry, irreducibility, or linearity of the couplings, we prove that a single controller can pin a coupled complex network to a homogenous solution. Sufficient conditions are presented to guarantee the convergence of the pinning process locally and globally. An effective approach to adapt the coupling strength is proposed. Several numerical simulations are given to verify our theoretical analysis.

945 citations


Posted Content
TL;DR: It is proved that a single controller can pin a coupled complex network to a homogenous solution without assuming symmetry, irreducibility, or linearity of the couplings.
Abstract: In this paper, without assuming symmetry, irreducibility, or linearity of the couplings, we prove that a single controller can pin a coupled complex network to a homogenous solution. Sufficient conditions are presented to guarantee the convergence of the pinning process locally and globally. An effective approach to adapt the coupling strength is proposed. Several numerical simulations are given to verify our theoretical analysis.

837 citations


Journal ArticleDOI
TL;DR: A new predictive strategy for current control of a three-phase neutral-point-clamped inverter does not require any kind of linear controller or modulation technique, achieving a different approach to control a power converter.
Abstract: A new predictive strategy for current control of a three-phase neutral-point-clamped inverter is presented. The algorithm is based on a model of the system. From that model, the behavior of the system is predicted for each possible switching state of the inverter. The state that minimizes a given quality function is selected to be applied during the next sampling interval. Several compositions of are proposed, including terms dedicated to achieve reference tracking, balance in the dc link, and reduction of the switching frequency. In comparison to an established control method, the strategy presents a remarkable performance. The proposed method achieves comparable reference tracking with lower switching frequency per semiconductor and similar transient behavior. The main advantage of the method is that it does not require any kind of linear controller or modulation technique, achieving a different approach to control a power converter.

545 citations


Journal ArticleDOI
01 Aug 2007
TL;DR: In this paper, an observer-based feedback controller is designed to robustly exponentially stabilize the networked system in the sense of mean square and also achieve the prescribed Hinfin disturbance-rejection-attenuation level.
Abstract: In this paper, the robust Hinfin control problem Is considered for a class of networked systems with random communication packet losses. Because of the limited bandwidth of the channels, such random packet losses could occur, simultaneously, in the communication channels from the sensor to the controller and from the controller to the actuator. The random packet loss is assumed to obey the Bernoulli random binary distribution, and the parameter uncertainties are norm-bounded and enter into both the system and output matrices. In the presence of random packet losses, an observer-based feedback controller is designed to robustly exponentially stabilize the networked system in the sense of mean square and also achieve the prescribed Hinfin disturbance-rejection-attenuation level. Both the stability-analysis and controller-synthesis problems are thoroughly investigated. It is shown that the controller-design problem under consideration is solvable if certain linear matrix inequalities (LMIs) are feasible. A simulation example is exploited to demonstrate the effectiveness of the proposed LMI approach.

Journal ArticleDOI
TL;DR: The synthesis of state-feedback controllers is solved in terms of linear programming problem, including the requirement of positiveness of the controller and its extension to uncertain plants.
Abstract: This brief solves some synthesis problems for a class of linear systems for which the state takes nonnegative values whenever the initial conditions are nonnegative. In particular, the synthesis of state-feedback controllers is solved in terms of linear programming problem, including the requirement of positiveness of the controller and its extension to uncertain plants. In addition, the synthesis problem with nonsymmetrical bounds on the stabilizing control is treated

Journal ArticleDOI
TL;DR: A model-predictive trajectory-tracking control applied to a mobile robot is presented and a comparison of the control obtained with that of a time-varying state-feedback controller is given.

Journal ArticleDOI
TL;DR: It is shown that all systems with one additional feedback can be divided into three different groups, according to their dynamical characteristics, and the system with two additional feedbacks is investigated.
Abstract: In this paper, an analysis of control structures for the electrical drive system with elastic joint is carried out. The synthesis of the control structure with proportional-integral controller supported by different additional feedbacks is presented. The classical pole-placement method is applied. Analytical equations, which allow for calculating the control structure parameters, are given. The limitation of the design due to the number of degrees of freedom of the considered drive systems is shown. In order to damp the torsional vibration effectively, the application of the feedback from one selected state variable is necessary. In the literature, a large number of possible feedbacks have been reported. However, in this paper, it is shown that all systems with one additional feedback can be divided into three different groups, according to their dynamical characteristics. In addition, the system with two additional feedbacks is investigated. The comparison between considered structures is carried out. The simulation results are confirmed experimentally in the laboratory setup

Patent
29 Oct 2007
TL;DR: In this paper, a system for automatically controlling vehicle equipment includes a controller to generate control signals based on information obtained from the image sensor as well as other detected parameters pertaining to the detected light source(s), the vehicle having the inventive control system, and the ambient environment.
Abstract: A system for automatically controlling vehicle equipment includes a controller to generate control signals. The control signals are derived based on information obtained from the image sensor as well as other detected parameters pertaining to the detected light source(s), the vehicle having the inventive control system, and the ambient environment. The control circuit may simply turn certain vehicle equipment, for example exterior lights, on or off, or change the brightness, aim, focus, etc. to produce various beam patterns that maximize the illuminated area in front of the vehicle without causing excessive glare in the eyes of other drivers.

Journal ArticleDOI
12 Mar 2007
TL;DR: The linear mixed effects model shows that there is a linear degradation in performance with increasing delay, and the optimal controller delay was found to range between approximately 100 ms for fast prehensors and 125 ms for slower prehensor.
Abstract: A tradeoff exists when considering the delay created by multifunctional prosthesis controllers. Large controller delays maximize the amount of time available for EMG signal collection and analysis (and thus maximize classification accuracy); however, large delays also degrade prosthesis performance by decreasing the responsiveness of the prosthesis. To elucidate an "optimal controller delay" twenty able-bodied subjects performed the Box and Block Test using a device called PHABS (prosthetic hand for able bodied subjects). Tests were conducted with seven different levels of controller delay ranging from nearly 0-300 ms and with two different artificial hand speeds. Based on repeted measures ANOVA analysis and a linear mixed effects model, the optimal controller delay was found to range between approximately 100 ms for fast prehensors and 125 ms for slower prehensors. Furthermore, the linear mixed effects model shows that there is a linear degradation in performance with increasing delay

Journal ArticleDOI
TL;DR: This work decomposes the problem of optimal linear quadratic Gaussian control of a system whose state is being measured by sensors that communicate with the controller over packet-dropping links into a standard LQR state-feedback controller design, along with an optimal encoder–decoder design for propagating and using the information across the unreliable links.

Journal ArticleDOI
TL;DR: In this article, a dual-mode control strategy for UAVs flying in a formation in a free and an obstacle-laden environment is proposed, where a safe mode is defined as an operation in an obstacle free environment and a dangerous mode is activated when there is a chance of collision or when there are obstacles in the path.
Abstract: Navigation problems of unmanned air vehicles (UAVs) flying in a formation in a free and an obstacle-laden environment are investigated in this brief. When static obstacles popup during the flight, the UAVs are required to steer around them and also avoid collisions between each other. In order to achieve these goals, a new dual-mode control strategy is proposed: a "safe mode" is defined as an operation in an obstacle-free environment and a "danger mode" is activated when there is a chance of collision or when there are obstacles in the path. Safe mode achieves global optimization because the dynamics of all the UAVs participating in the formation are taken into account in the controller formulation. In the danger mode, a novel algorithm using a modified Grossberg neural network (GNN) is proposed for obstacle/collision avoidance. This decentralized algorithm in 2-D uses the geometry of the flight space to generate optimal/suboptimal trajectories. Extension of the proposed scheme for obstacle avoidance in a 3-D environment is shown. In order to handle practical vehicle constraints, a model predictive control-based tracking controller is used to track the references generated. Numerical results are provided to motivate this approach and to demonstrate its potential.

Journal ArticleDOI
TL;DR: In this paper, a combined power management/design optimization problem for the performance optimization of FCHVs is formulated, which includes subsystem scaling models to predict the characteristics of components of different sizes, and a parameterizable and near-optimal controller for power management optimization.

Journal ArticleDOI
TL;DR: In this article, a combined feedback and input shaping controller is developed for a 10-ton bridge crane at the Georgia Institute of Technology to address both sources of oscillation, and the controller achieves good positioning accuracy and significant sway reduction.

Journal ArticleDOI
TL;DR: A novel problem formulation is proposed that addresses a number of important multiagent missions and a control law is developed that guarantees that a partially connected fleet also attains the coverage goal.
Abstract: This paper studies the problem of dynamically covering a given region in the plane using a set of mobile sensor agents. A novel problem formulation is proposed that addresses a number of important multiagent missions. The coverage goal, which is to cover a given search domain using multiple mobile sensors such that each point is surveyed until a certain preset level is achieved, is formulated in a mathematically precise problem statement. A control law is developed that guarantees to meet the coverage goal. This control law is modified to guarantee that a partially connected fleet also attains the coverage goal. Finally, a collision avoidance component is added to the controller to guarantee that the agents do not collide. The new controller is shown to safely achieve coverage. Several numerical examples are provided to illustrate the main results.

MonographDOI
27 Jul 2007
Abstract: Preface. Notation. 1 Introduction. 1.1 Systems and Control 1.2 Modern Control Theory 1.3 Stability 1.4 Optimal Control 1.5 Optimal Control Approach 1.6 Kharitonov Approach 1.7 H- and H2 Control 1.8 Applications 1.9 Use of This Book 2 Fundamentals of Control Theory. 2.1 State Space Model 2.2 Responses of Linear Systems 2.3 Similarity Transformation 2.4 Controllability and Observability 2.5 Pole Placement by State Feedback 2.6 Pole Placement Using Observer 2.7 Notes and References 2.8 Problems 3 Stability Theory. 3.1 Stability and Lyapunov Theorem 3.2 Linear Systems 3.3 Routh-Hurwitz Criterion 3.4 Nyquist Criterion 3.5 Stabilizability and Detectability 3.6 Notes and References 3.7 Problems 4 Optimal Control and Optimal Observers. 4.1 Optimal Control Problem 4.2 Principle of Optimality 4.3 Hamilton-Jacobi-Bellman Equation 4.4 Linear Quadratic Regulator Problem 4.5 Kalman Filter 4.6 Notes and References 4.7 Problems 5 Robust Control of Linear Systems. 5.1 Introduction 5.2 Matched Uncertainty 5.3 Unmatched Uncertainty 5.4 Uncertainty in the Input Matrix 5.5 Notes and References 5.6 Problems 6 Robust Control of Nonlinear Systems. 6.1 Introduction 6.2 Matched Uncertainty 6.3 Unmatched Uncertainty 6.4 Uncertainty in the Input Matrix 6.5 Notes and References 6.6 Problems 7 Kharitonov Approach. 7.1 Introduction 7.2 Preliminary Theorems 7.3 Kharitonov Theorem 7.4 Control Design Using Kharitonov Theorem 7.5 Notes and References 7.6 Problems 8 H and H2 Control. 8.1 Introduction 8.2 Function Space 8.3 Computation of H2 and H- Norms 8.4 Robust Control Problem as H2 and H- Control Problem 8.5 H2/H- Control Synthesis 8.6 Notes and References 8.7 Problems 9 Robust Active Damping. 9.1 Introduction 9.2 Problem Formulation 9.3 Robust Active Damping Design 9.4 Active Vehicle Suspension System 9.5 Discussion 9.6 Notes and References 10 Robust Control of Manipulators. 10.1 Robot Dynamics 10.2 Problem Formulation 10.3 Robust Control Design 10.4 Simulations 10.5 Notes and References 11 Aircraft Hovering Control. 11.1 Modelling and Problem Formulation 11.2 Control Design for Jet-borne Hovering 11.3 Simulation 11.4 Notes and References Appendix A: Mathematical Modelling of Physical Systems. References and Bibliography. Index.

Proceedings ArticleDOI
09 Jul 2007
TL;DR: This work treats automobile trajectory tracking in a new manner, by considering the orientation of the front wheels - not the vehicle's body - with respect to the desired trajectory, enabling collocated control of the system.
Abstract: This paper presents a nonlinear control law for an automobile to autonomously track a trajectory, provided in real-time, on rapidly varying, off-road terrain. Existing methods can suffer from a lack of global stability, a lack of tracking accuracy, or a dependence on smooth road surfaces, any one of which could lead to the loss of the vehicle in autonomous off-road driving. This work treats automobile trajectory tracking in a new manner, by considering the orientation of the front wheels - not the vehicle's body - with respect to the desired trajectory, enabling collocated control of the system. A steering control law is designed using the kinematic equations of motion, for which global asymptotic stability is proven. This control law is then augmented to handle the dynamics of pneumatic tires and of the servo-actuated steering wheel. To control vehicle speed, the brake and throttle are actuated by a switching proportional integral (PI) controller. The complete control system consumes a negligible fraction of a computer's resources. It was implemented on a Volkswagen Touareg, "Stanley", the Stanford Racing Team's entry in the DARPA Grand Challenge 2005, a 132 mi autonomous off-road race. Experimental results from Stanley demonstrate the ability of the controller to track trajectories between obstacles, over steep and wavy terrain, through deep mud puddles, and along cliff edges, with a typical root mean square (RMS) crosstrack error of under 0.1 m. In the DARPA National Qualification Event 2005, Stanley was the only vehicle out of 40 competitors to not hit an obstacle or miss a gate, and in the DARPA Grand Challenge 2005 Stanley had the fastest course completion time.

Journal ArticleDOI
TL;DR: In this paper, a systematic approach to small-signal modeling of a micro-grid system that includes conventional (rotating machine) and electronically interfaced distributed resource (DR) units is presented.
Abstract: A systematic approach to small-signal modelling of a micro-grid system that includes conventional (rotating machine) and electronically interfaced distributed resource (DR) units is presented here. The proposed approach incorporates fundamental frequency deviations in the overall system model and provides a methodology for the analysis of autonomous micro-grid, which inherently is more prone to frequency changes than the conventional utility grid. The model represents (i) electro-mechanical dynamics of the synchronous machine including the exciter and the governor systems, (ii) dynamics of the voltage-sourced converter and its real/reactive power controllers and (iii) the network dynamics. The model is intended for the controller design/optimisation, evaluation of angle/voltage stability, investigation of torsional dynamics, controller interactions of electronically interfaced DR units and low-frequency power quality issues. Typical results from application of the proposed modelling approach to a study system are presented. The results are qualitatively verified on the basis of the comparison with those obtained from time-domain simulation in the PSCAD/EMTDC environment

Journal ArticleDOI
TL;DR: In this paper, an advanced active control technique is proposed to incorporate a current control loop in the dc-dc converter for ripple reduction, and the proposed active ripple reduction method has been verified with computer simulation and hardware experiment with a proton exchange membrane type fuel cell using a multiphase dc-DC converter along with a full-bridge dc-ac inverter.
Abstract: A fuel cell power system that contains a single-phase dc-ac inverter tends to draw an ac ripple current at twice the output frequency. Such a ripple current may shorten fuel cell life span and worsen the fuel efficiency due to the hystersis effect. The most obvious impact is it tends to reduce the fuel cell output capacity because the fuel cell controller trips under instantaneous over-current condition. In this paper, the ripple current propagation path is analyzed, and its linearized ac model is derived. The equivalent circuit model and ripple current reduction with passive energy storage component are simulated and verified with experiments. An advanced active control technique is then proposed to incorporate a current control loop in the dc-dc converter for ripple reduction. The proposed active ripple reduction method has been verified with computer simulation and hardware experiment with a proton exchange membrane type fuel cell using a multiphase dc-dc converter along with a full-bridge dc-ac inverter. Test results with open loop, single voltage loop, and the proposed active current-loop control are provided for comparison.

Journal ArticleDOI
TL;DR: In this paper, a novel method using particle swarm optimisation (PSO) is proposed for optimising parameters of controllers of a wind turbine with doubly fed induction generator (DFIG).
Abstract: A novel method using particle swarm optimisation (PSO) is proposed for optimising parameters of controllers of a wind turbine (WT) with doubly fed induction generator (DFIG). The PSO algorithm is employed in the proposed parameter tuning method to search for the optimal parameters of controllers and achieve the optimal coordinated control of multiple controllers of WT system. The implementation of the algorithm for optimising the controllers' parameters is described in detail. In the analysis, the generic dynamic model of WT with DFIG and its associated controllers is presented, and the small signal stability model is derived; based on this, an eigenvalue-based objective function is utilised in the PSO-based optimisation algorithm to optimise the controllers' parameters. With the optimised controller parameters, the system stability is improved under both small and large disturbances. Furthermore, the fault ride-through capability of the WT with DFIG can be improved using the optimised controller. Simulations are performed to illustrate the control performance.

Proceedings ArticleDOI
11 Jun 2007
TL;DR: This work presents a technique that controls the peak power consumption of a high-density server by implementing a feedback controller that uses precise, system-level power measurement to periodically select the highest performance state while keeping the system within a fixed power constraint.
Abstract: We present a technique that controls the peak power consumption of a high-density server by implementing a feedback controller that uses precise, system-level power measurement to periodically select the highest performance state while keeping the system within a fixed power constraint. A control theoretic methodology is applied to systematically design this control loop with analytic assurances of system stability and controller performance, despite unpredictable workloads and running environments. In a real server we are able to control power over a 1 second period to within 1 W. Additionally, we have observed that power over an 8 second period can be controlled to within 0.1 W. We believe that we are the first to demonstrate such precise control of power in a real server. Conventional servers respond to power supply constraint situations by using simple open-loop policies to set a safe performance level in order to limit peak power consumption. We show that closed-loop control can provide higher performance under these conditions and test this technique on an IBM BladeCenter HS20 server. Experimental results demonstrate that closed-loop control provides up to 82% higher application performance compared to open-loop control and up to 17% higher performance compared to a widely used ad-hoc technique.

Journal ArticleDOI
TL;DR: The designed impulsive controller not only can globally exponentially stabilize the time delay systems, but also can control the exponential convergence rate of the systems.
Abstract: A class of impulsive control systems with time-varying delays is considered. By establishing an impulsive delay differential inequality, we analyze the global exponential stability of the impulsive delay systems and estimate the exponential convergence rate. On the basis of the analysis, a design procedure of impulsive controller is presented. The designed impulsive controller not only can globally exponentially stabilize the time delay systems, but also can control the exponential convergence rate of the systems. Two numerical examples are given to illustrate the effectiveness of the method.

Journal ArticleDOI
TL;DR: It is shown that a bank of resonant filters, used as a refinement term for harmonic compensation in earlier works, is equivalent to a repetitive scheme with a particular structure, which takes a negative feedback structure plus a feedforward path whenever the odd harmonics are considered for compensation only.
Abstract: This paper discusses a repetitive-based controller for an uninterruptible power supply (UPS) inverter. It is shown that a bank of resonant filters, used as a refinement term for harmonic compensation in earlier works, is equivalent to a repetitive scheme with a particular structure. The latter is implemented using a simple feedback array with a delay line, thus making the implementation relatively easy. More precisely, the repetitive scheme takes a negative feedback structure plus a feedforward path whenever the odd harmonics are considered for compensation only. The repetitive scheme, equivalent to the bank of resonant filters, acts as a refinement term to reject the harmonic distortion caused by the unbalanced and distorted load current, and thus, allowing the UPS inverter to deliver an almost pure sinusoidal balanced voltage. Experimental results in a 1.5 KVA three-phase inverter are included to show the performance of the proposed controller

Proceedings ArticleDOI
01 Dec 2007
TL;DR: This work designs controllers using a backstepping method for parabolic PDEs and shows that the proposed method can be used for boundary control of the a Korteweg-de Vries-like third order PDE.
Abstract: We consider a problem of boundary feedback stabilization of first order hyperbolic partial differential equations (PDEs). These equations serve as a model for such physical phenomena as traffic flows, chemical reactors, and heat exchangers. We design controllers using a backstepping method, which has been recently developed for parabolic PDEs. With the integral transformation and boundary feedback the unstable PDE is converted into a "delay line" system which converges to zero in finite time. We then apply this procedure to finite-dimensional systems with actuator and sensor delays to recover a well-known infinite-dimensional controller (analog of the Smith predictor for unstable plants). We also show that the proposed method can be used for boundary control of the a Korteweg-de Vries-like third order PDE. The designs are illustrated with simulations.