scispace - formally typeset
Search or ask a question

Showing papers on "Control theory published in 2017"


Journal ArticleDOI
11 Oct 2017
TL;DR: This work seeks to provide a theoretical framework for how to design controllers that are decomposed across timescales in this way, and exhibits a design, named Multi-timescale Reflexive Predictive Control (MRPC), which maintains a per-timestep cost within a constant factor of the offline optimal in an adversarial setting.
Abstract: Many real-world control systems, such as the smart grid and software defined networks, have decentralized components that react quickly using local information and centralized components that react slowly using a more global view. This work seeks to provide a theoretical framework for how to design controllers that are decomposed across timescales in this way. The framework is analogous to how the network utility maximization framework uses optimization decomposition to distribute a global control problem across independent controllers, each of which solves a local problem; except our goal is to decompose a global problem temporally, extracting a timescale separation. Our results highlight that decomposition of a multi-timescale controller into a fast timescale, reactive controller and a slow timescale, predictive controller can be near-optimal in a strong sense. In particular, we exhibit such a design, named Multi-timescale Reflexive Predictive Control (MRPC), which maintains a per-timestep cost within a constant factor of the offline optimal in an adversarial setting.

1,777 citations


Journal ArticleDOI
TL;DR: It is shown that the proposed control schemes guarantee that all the closed-loop signals are globally bounded and the tracking/stabilization error exponentially converges towards a compact set which is adjustable.
Abstract: In this technical note, the problem of event-trigger based adaptive control for a class of uncertain nonlinear systems is considered. The nonlinearities of the system are not required to be globally Lipschitz. Since the system contains unknown parameters, it is a difficult task to check the assumption of the input-to-state stability (ISS) with respect to the measurement errors, which is required in most existing literature. To solve this problem, we design both the adaptive controller and the triggering event at the same time such that the ISS assumption is no longer needed. In addition to presenting new design methodologies based on the fixed threshold strategy and relative threshold strategy, we also propose a new strategy named the switching threshold strategy. It is shown that the proposed control schemes guarantee that all the closed-loop signals are globally bounded and the tracking/stabilization error exponentially converges towards a compact set which is adjustable.

804 citations


Journal ArticleDOI
TL;DR: The simulation results show that the proposed path-planning approach is effective for many driving scenarios, and the MMPC-based path-tracking controller provides dynamic tracking performance and maintains good maneuverability.
Abstract: A path planning and tracking framework is presented to maintain a collision-free path for autonomous vehicles. For path-planning approaches, a 3-D virtual dangerous potential field is constructed as a superposition of trigonometric functions of the road and the exponential function of obstacles, which can generate a desired trajectory for collision avoidance when a vehicle collision with obstacles is likely to happen. Next, to track the planned trajectory for collision avoidance maneuvers, the path-tracking controller formulated the tracking task as a multiconstrained model predictive control (MMPC) problem and calculated the front steering angle to prevent the vehicle from colliding with a moving obstacle vehicle. Simulink and CarSim simulations are conducted in the case where moving obstacles exist. The simulation results show that the proposed path-planning approach is effective for many driving scenarios, and the MMPC-based path-tracking controller provides dynamic tracking performance and maintains good maneuverability.

675 citations


Journal ArticleDOI
TL;DR: This paper presents safety barrier certificates that ensure scalable and provably collision-free behaviors in multirobot systems by modifying the nominal controllers to formally satisfy safety constraints.
Abstract: This paper presents safety barrier certificates that ensure scalable and provably collision-free behaviors in multirobot systems by modifying the nominal controllers to formally satisfy safety constraints. This is achieved by minimizing the difference between the actual and the nominal controllers subject to safety constraints. The resulting computation of the safety controllers is done through a quadratic programming problem that can be solved in real-time and in this paper, we describe a series of problems of increasing complexity. Starting with a centralized formulation, where the safety controller is computed across all agents simultaneously, we show how one can achieve a natural decentralization whereby individual robots only have to remain safe relative to nearby robots. Conservativeness and existence of solutions as well as deadlock-avoidance are then addressed using a mixture of relaxed control barrier functions, hybrid braking controllers, and consistent perturbations. The resulting control strategy is verified experimentally on a collection of wheeled mobile robots whose nominal controllers are explicitly designed to make the robots collide.

504 citations


Journal ArticleDOI
TL;DR: This survey paper comprehensively survey and summarize the characterizations and taxonomy of state-of-the-art studies in SDN control plane scalability, and outlines the potential challenges and open problems that need to be addressed further for more scalableSDN control planes.

438 citations


Journal ArticleDOI
TL;DR: This approach employs a scaling of the state by a function of time that grows unbounded towards the terminal time and is followed by a design of a controller that stabilizes the system in the scaled state representation, yielding regulation in prescribed finite time for the original state.

436 citations


Journal ArticleDOI
TL;DR: A model predictive path-planning controller is introduced in this paper such that its objective includes potential functions along with the vehicle dynamics terms and is capable of treating different obstacles and road structures distinctly while planning the optimal path utilizing vehicle dynamics.
Abstract: Artificial potential fields and optimal controllers are two common methods for path planning of autonomous vehicles. An artificial potential field method is capable of assigning different potential functions to different types of obstacles and road structures and plans the path based on these potential functions. It does not, however, include the vehicle dynamics in the path-planning process. On the other hand, an optimal path-planning controller integrated with vehicle dynamics plans an optimal feasible path that guarantees vehicle stability in following the path. In this method, the obstacles and road boundaries are usually included in the optimal control problem as constraints and not with any arbitrary function. A model predictive path-planning controller is introduced in this paper such that its objective includes potential functions along with the vehicle dynamics terms. Therefore, the path-planning system is capable of treating different obstacles and road structures distinctly while planning the optimal path utilizing vehicle dynamics. The path-planning controller is modeled and simulated on a CarSim vehicle model for some complicated test scenarios. The results show that, with this path-planning controller, the vehicle avoids the obstacles and observes road regulations with appropriate vehicle dynamics. Moreover, since the obstacles and road regulations can be defined with different functions, the path-planning system plans paths corresponding to their importance and priorities.

435 citations


Journal ArticleDOI
TL;DR: An extended state observer (ESO) based second-order sliding-mode (SOSM) control for three-phase two-level grid-connected power converters and experimental results are presented to validate the control algorithm under a real power converter prototype.
Abstract: This paper proposes an extended state observer (ESO) based second-order sliding-mode (SOSM) control for three-phase two-level grid-connected power converters. The proposed control technique forces the input currents to track the desired values, which can indirectly regulate the output voltage while achieving a user-defined power factor. The presented approach has two control loops. A current control loop based on an SOSM and a dc-link voltage regulation loop which consists of an ESO plus SOSM. In this work, the load connected to the dc-link capacitor is considered as an external disturbance. An ESO is used to asymptotically reject this external disturbance. Therefore, its design is considered in the control law derivation to achieve a high performance. Theoretical analysis is given to show the closed-loop behavior of the proposed controller and experimental results are presented to validate the control algorithm under a real power converter prototype.

414 citations


Journal ArticleDOI
TL;DR: The design of asynchronous controller, which covers the well-known mode-independent controller and synchronous controller as special cases, is addressed and the DC motor device is applied to demonstrate the practicability of the derived asynchronous synthesis scheme.
Abstract: The issue of asynchronous passive control is addressed for Markov jump systems in this technical note. The asynchronization phenomenon appears between the system modes and controller modes, which is described by a hidden Markov model. Accordingly, a hidden Markov jump model is used to name the resultant closed-loop system. By utilizing the matrix inequality technique, three equivalent sufficient conditions are obtained, which can guarantee the hidden Markov jump systems to be stochastically passive. Based on the established conditions, the design of asynchronous controller, which covers the well-known mode-independent controller and synchronous controller as special cases, is addressed. The DC motor device is applied to demonstrate the practicability of the derived asynchronous synthesis scheme.

413 citations


Journal ArticleDOI
TL;DR: In this paper, a review of PEMFC control sub-systems including reaction, thermal, water management and power electronic subsystems is presented, with special attention on control strategies to avoid fuel starvation.

395 citations


Journal ArticleDOI
TL;DR: A composite control method combining the DPCC part and current prediction and feedforward compensation part based on SCDO, called DPCC + SCDO method, is developed and a novel sliding-mode exponential reaching law is proposed to further improve the performance of the proposed current control approach.
Abstract: In order to optimize the current-control performance of the permanent-magnet synchronous motor (PMSM) system with model parameter mismatch and one-step control delay, an improved deadbeat predictive current control (DPCC) algorithm for the PMSM drive systems is proposed in this paper. First, the performance of the conventional predictive current control, when parameter mismatch exist, is analyzed, and then a stator current and disturbance observer (SCDO) based on sliding-mode exponential reaching law, which is able to simultaneously predict future value of stator current and track system disturbance caused by parameter mismatch in real time, is proposed. Based on this SCDO, prediction currents are used for replacing the sampled current in DPCC to compensate one-step delay, and estimated parameter disturbances are considered as the feedforward value to compensate the voltage reference calculated by deadbeat predictive current controller. Thus, a composite control method combining the DPCC part and current prediction and feedforward compensation part based on SCDO, called DPCC + SCDO method, is developed. Moreover, based on conventional exponential reaching law, a novel sliding-mode exponential reaching law is proposed to further improve the performance of the DPCC + SCDO method. Simulation and experimental results both show the validity of the proposed current control approach.

Journal ArticleDOI
TL;DR: The purpose of the address problem is to design an observer-based distributed controller such that the closed-loop multiagent system achieves the prescribed consensus in spite of the lossy sensors and cyber-attacks.
Abstract: In this paper, the observer-based event-triggering consensus control problem is investigated for a class of discrete-time multiagent systems with lossy sensors and cyber-attacks. A novel distributed observer is proposed to estimate the relative full states and the estimated states are then used in the feedback protocol in order to achieve the overall consensus. An event-triggered mechanism with state-independent threshold is adopted to update the control input signals so as to reduce unnecessary data communications. The success ratio of the launched attacks is taken into account to reflect the probabilistic failures of the attacks passing through the protection devices subject to limited resources and network fluctuations. The purpose of the address problem is to design an observer-based distributed controller such that the closed-loop multiagent system achieves the prescribed consensus in spite of the lossy sensors and cyber-attacks. By making use of eigenvalues and eigenvectors of the Laplacian matrix, the closed-loop system is transformed into an easy-to-analyze setting and then a sufficient condition is derived to guarantee the desired consensus. Furthermore, the controller gain is obtained in terms of the solution to certain matrix inequality which is independent of the number of agents. An algorithm is provided to optimize the consensus bound. Finally, a simulation example is utilized to illustrate the usefulness of the proposed controller design scheme.

Journal ArticleDOI
TL;DR: This technical note is concerned with the design problem of adaptive sliding-mode stabilization for Markov jump nonlinear systems with actuator faults and the main attention focuses on designing the adaptive slide-mode controller to overcome these problems.
Abstract: This technical note is concerned with the design problem of adaptive sliding-mode stabilization for Markov jump nonlinear systems with actuator faults. The specific information including bounds of actuator faults, bounds of the nonlinear term and the external disturbance is not available for the controller design. The main attention focuses on designing the adaptive sliding-mode controller to overcome these problems. Firstly, a sliding-mode surface is constructed such that the reduced-order equivalent sliding motion is stochastically stable. Secondly, the adaptive sliding-mode controller can drive the state trajectories of the system onto the sliding-mode surface in finite time, and can estimate the loss of effectiveness of actuator faults and bounds of the nonlinear term and the external disturbance online. Thirdly, the stochastic stability of the closed-loop system can be guaranteed. Finally, a practical example is provided to demonstrate the effectiveness of the presented results.

Journal ArticleDOI
TL;DR: In order to extend the semiglobal stability achieved by conventional neural control to global stability, a switching mechanism is integrated into the control design and effectiveness of the proposed control design has been shown through experiments carried out on the Baxter Robot.
Abstract: Robots with coordinated dual arms are able to perform more complicated tasks that a single manipulator could hardly achieve. However, more rigorous motion precision is required to guarantee effective cooperation between the dual arms, especially when they grasp a common object. In this case, the internal forces applied on the object must also be considered in addition to the external forces. Therefore, a prescribed tracking performance at both transient and steady states is first specified, and then, a controller is synthesized to rigorously guarantee the specified motion performance. In the presence of unknown dynamics of both the robot arms and the manipulated object, the neural network approximation technique is employed to compensate for uncertainties. In order to extend the semiglobal stability achieved by conventional neural control to global stability, a switching mechanism is integrated into the control design. Effectiveness of the proposed control design has been shown through experiments carried out on the Baxter Robot.

Journal ArticleDOI
TL;DR: This paper considers the trajectory tracking of a marine surface vessel in the presence of output constraints and uncertainties, and an asymmetric barrier Lyapunov function is employed to cope with the output constraints.
Abstract: In this paper, we consider the trajectory tracking of a marine surface vessel in the presence of output constraints and uncertainties. An asymmetric barrier Lyapunov function is employed to cope with the output constraints. To handle the system uncertainties, we apply adaptive neural networks to approximate the unknown model parameters of a vessel. Both full state feedback control and output feedback control are proposed in this paper. The state feedback control law is designed by using the Moore–Penrose pseudoinverse in case that all states are known, and the output feedback control is designed using a high-gain observer. Under the proposed method the controller is able to achieve the constrained output. Meanwhile, the signals of the closed loop system are semiglobally uniformly bounded. Finally, numerical simulations are carried out to verify the feasibility of the proposed controller.

Journal ArticleDOI
TL;DR: A neural network (NN) controller is designed to suppress the vibration of a flexible robotic manipulator system with input deadzone and is able to compensate for the estimated deadzone effect and track the desired trajectory.
Abstract: In this paper, a neural network (NN) controller is designed to suppress the vibration of a flexible robotic manipulator system with input deadzone. The NN aims to approximate the unknown robotic manipulator dynamics and eliminate the effects of input deadzone in the actuators. In order to describe the system more accurately, the model of the flexible manipulator is constructed based on the lumping spring-mass method. Full state feedback NN control is proposed first and output feedback NN control with a high-gain observer is then devised to make the proposed control scheme more practical. The effect of input deadzone is approximated by a radial basis function neural network (RBFNN) and the unknown dynamics of the manipulator is approximated by another RBFNN. The proposed NN control is able to compensate for the estimated deadzone effect and track the desired trajectory. For the stability analysis, the Lyapunov's direct method is used to ensure uniform ultimate boundedness (UUB) of the closed-loop system. Simulations are given to verify the control performance of the NN controllers comparing with the proportional derivative (PD) controller. At last, the experiments are conducted on the Quanser platform to further prove the feasibility and control performance of the NN controllers.

Journal ArticleDOI
TL;DR: It is proven that all the signals in the closed-loop switched system are bounded, and the system output converges to a small neighborhood of the origin.
Abstract: This paper proposes an fuzzy adaptive output-feedback stabilization control method for nonstrict feedback uncertain switched nonlinear systems. The controlled system contains unmeasured states and unknown nonlinearities. First, a switched state observer is constructed in order to estimate the unmeasured states. Second, a variable separation approach is introduced to solve the problem of nonstrict feedback. Third, fuzzy logic systems are utilized to identify the unknown uncertainties, and an adaptive fuzzy output feedback stabilization controller is set up by exploiting the backstepping design principle. At last, by applying the average dwell time method and Lyapunov stability theory, it is proven that all the signals in the closed-loop switched system are bounded, and the system output converges to a small neighborhood of the origin. Two examples are given to further show the effectiveness of the proposed switched control approach.

Journal ArticleDOI
TL;DR: This paper introduces a decomposition framework to model, analyze, and design the platoon system, and the basis of typical distributed control techniques is presented, including linear consensus control, distributed robust control, distributing sliding mode control, and distributed model predictive control.
Abstract: The platooning of connected and automated vehicles (CAVs) is expected to have a transformative impact on road transportation, e.g., enhancing highway safety, improving traffic utility, and reducing fuel consumption. Requiring only local information, distributed control schemes are scalable approaches to the coordination of multiple CAVs without using centralized communication and computation. From the perspective of multi-agent consensus control, this paper introduces a decomposition framework to model, analyze, and design the platoon system. In this framework, a platoon is naturally decomposed into four interrelated components, i.e., 1) node dynamics, 2) information flow network, 3) distributed controller, and 4) geometry formation. The classic model of each component is summarized according to the results of the literature survey; four main performance metrics, i.e., internal stability, stability margin, string stability, and coherence behavior, are discussed in the same fashion. Also, the basis of typical distributed control techniques is presented, including linear consensus control, distributed robust control, distributed sliding mode control, and distributed model predictive control.

Journal ArticleDOI
TL;DR: A two-layer control architecture for heavy-duty vehicle platooning aimed to safely and fuel-efficiently coordinate the vehicles in the platoon is proposed and a distributed model predictive control framework is developed for the real-time control of the vehicles.
Abstract: The operation of groups of heavy-duty vehicles at a short inter-vehicular distance, known as platoon, allows one to lower the overall aerodynamic drag and, therefore, to reduce fuel consumption and greenhouse gas emissions. However, due to the large mass and limited engine power of trucks, slopes have a significant impact on the feasible and optimal speed profiles that each vehicle can and should follow. Maintaining a short inter-vehicular distance, as required by platooning, without coordination between vehicles can often result in inefficient or even unfeasible trajectories. In this paper, we propose a two-layer control architecture for heavy-duty vehicle platooning aimed to safely and fuel-efficiently coordinate the vehicles in the platoon. Here, the layers are responsible for the inclusion of preview information on road topography and the real-time control of the vehicles, respectively. Within this architecture, dynamic programming is used to compute the fuel-optimal speed profile for the entire platoon and a distributed model predictive control framework is developed for the real-time control of the vehicles. The effectiveness of the proposed controller is analyzed by means of simulations of several realistic scenarios that suggest a possible fuel saving of up to 12% for follower vehicles compared with the use of standard platoon controllers.

Journal ArticleDOI
TL;DR: The proposed controller theoretically achieves an asymptotic tracking performance in the presence of parametric uncertainties and constant disturbances and prescribed transient tracking performance and final tracking accuracy can also be guaranteed when existing time-variant uncertain nonlinearities.
Abstract: This paper presents an active disturbance rejection adaptive control scheme via full state feedback for motion control of hydraulic servo systems subjected to both parametric uncertainties and uncertain nonlinearities. The proposed controller is derived by effectively integrating adaptive control with extended state observer via backstepping method. The adaptive law is synthesized to handle parametric uncertainties and the remaining uncertainties are estimated by the extended state observer and then compensated in a feedforward way. The unique features of the proposed controller are that not only the matched uncertainties but also unmatched uncertainties are estimated by constructing two extended state observers, and the parameter adaptation law is driven by both tracking errors and state estimation errors. Since the majority of parametric uncertainties can be reduced by the parameter adaptation, the task of the extended state observer is much alleviated. Consequently, high-gain feedback is avoided and improved tracking performance can be expected. The proposed controller theoretically achieves an asymptotic tracking performance in the presence of parametric uncertainties and constant disturbances. In addition, prescribed transient tracking performance and final tracking accuracy can also be guaranteed when existing time-variant uncertain nonlinearities. Comparative experimental results are obtained to verify the high tracking performance nature of the proposed control strategy.

Journal ArticleDOI
TL;DR: In order to overcome the difficulty of controller design for nonstrict-feedback system in backstepping design process, a variables separation method is introduced and an adaptive fuzzy controller is designed to guarantee all the signals of the resulting closed-loop system to be bounded.
Abstract: This paper investigates the problem of adaptive fuzzy state-feedback control for a category of single-input and single-output nonlinear systems in nonstrict-feedback form. Unmodeled dynamics and input constraint are considered in the system. Fuzzy logic systems are employed to identify unknown nonlinear characteristics existing in systems. An appropriate Lyapunov function is chosen to ensure unmodeled dynamics to be input-to-state practically stable. A smooth function is introduced to tackle input saturation. In order to overcome the difficulty of controller design for nonstrict-feedback system in backstepping design process, a variables separation method is introduced. Moreover, based on small-gain technique, an adaptive fuzzy controller is designed to guarantee all the signals of the resulting closed-loop system to be bounded. Finally, two illustrative examples are given to validate the effectiveness of the new design techniques.

Journal ArticleDOI
TL;DR: This work highlights the characteristics and comments of the different model-free adaptive control schemes in detail to facilitate the understanding of the readers.
Abstract: A brief overview on the model-based control and data-driven control methods is presented. The data-driven equivalent dynamic linearization, as a foundational analysis tool of data-driven control methods for discrete-time nonlinear systems, is introduced in detail with motivations and distinct features. The prototype model-free adaptive control schemes by using the dynamic linearization to an unknown nonlinear plant model, as well as the alternative model-free adaptive control methods by using the dynamic linearization to an unknown ideal nonlinear controller, are discussed. Furthermore, the extensions of the dynamic linearization to unknown nonlinear repetitive systems and the corresponding model-free adaptive iterative learning control methods are also overviewed and summarized. This work highlights the characteristics and comments of the different model-free adaptive control schemes in detail to facilitate the understanding of the readers. Finally, some perspectives on data-driven control methods in information-rich age are given.

Journal ArticleDOI
TL;DR: Critical review of the basic vehicle model usually used; the control strategies usually employed in path tracking control, and the performance criteria used to evaluate the controller’s performance are provided.
Abstract: Autonomous vehicle field of study has seen considerable researches within three decades. In the last decade particularly, interests in this field has undergone tremendous improvement. One of the main aspects in autonomous vehicle is the path tracking control, focusing on the vehicle control in lateral and longitudinal direction in order to follow a specified path or trajectory. In this paper, path tracking control is reviewed in terms of the basic vehicle model usually used; the control strategies usually employed in path tracking control, and the performance criteria used to evaluate the controller's performance. Vehicle model is categorised into several types depending on its linearity and the type of behaviour it simulates, while path tracking control is categorised depending on its approach. This paper provides critical review of each of these aspects in terms of its usage and disadvantages/advantages. Each aspect is summarised for better overall understanding. Based on the critical reviews, main challenges in the field of path tracking control is identified and future research direction is proposed. Several promising advancement is proposed with the main prospect is focused on adaptive geometric controller developed on a nonlinear vehicle model and tested with hardware-in-the-loop (HIL). It is hoped that this review can be treated as preliminary insight into the choice of controllers in path tracking control development for an autonomous ground vehicle.

Journal ArticleDOI
TL;DR: An adaptive fuzzy backstepping control method for a class of uncertain fractional-order nonlinear systems with unknown external disturbances that ensures convergence of the tracking error is constructed.
Abstract: Backstepping control is effective for integer-order nonlinear systems with triangular structures. Nevertheless, it is hard to be applied to fractional-order nonlinear systems as the fractional-order derivative of a compound function is very complicated. In this paper, we develop an adaptive fuzzy backstepping control method for a class of uncertain fractional-order nonlinear systems with unknown external disturbances. In each step, a complicated unknown nonlinear function produced by differentiating a compound function with a fractional order is approximated by a fuzzy logic system, and a virtual control law is designed based on the fractional Lyapunov stability criterion. At the last step, an adaptive fuzzy controller that ensures convergence of the tracking error is constructed. The effectiveness of the proposed method has been verified by two simulation examples.

Journal ArticleDOI
TL;DR: A novel adaptive fuzzy tracking control scheme is developed to guarantee all variables of the closed-loop systems are semiglobally uniformly ultimately bounded, and the tracking error can be adjusted around the origin with a small neighborhood.
Abstract: This paper investigates the problem of adaptive fuzzy tracking control for nonlinear strict-feedback systems with input delay and output constraint. Input delay is handled based on the information of Pade approximation and output constraint problem is solved by barrier Lypaunov function. Some adaptive parameters of the controller need to be updated online through considering the norm of membership function vector instead of all sub-vectors. A novel adaptive fuzzy tracking control scheme is developed to guarantee all variables of the closed-loop systems are semiglobally uniformly ultimately bounded, and the tracking error can be adjusted around the origin with a small neighborhood. The stability of the closed-loop systems is proved and simulation results are given to demonstrate the effectiveness of the proposed control approach.

Journal ArticleDOI
TL;DR: An adaptive controller is developed that guarantees uniform ultimate boundedness of the closed-loop dynamical system in the face of adversarial sensor and actuator attacks that are time-varying and partial asymptotic stability when the sensors and actuators attacks areTime-invariant.
Abstract: Recent technological advances in communications and computation have spurred a broad interest in control law architectures involving the monitoring, coordination, integration, and operation of sensing, computing, and communication components that tightly interact with the physical processes that they control. These systems are known as cyber-physical systems and due to their use of open computation and communication platform architectures, controlled cyber-physical systems are vulnerable to adversarial attacks. In this technical note, we propose a novel adaptive control architecture for addressing security and safety in cyber-physical systems. Specifically, we develop an adaptive controller that guarantees uniform ultimate boundedness of the closed-loop dynamical system in the face of adversarial sensor and actuator attacks that are time-varying and partial asymptotic stability when the sensor and actuator attacks are time-invariant. Finally, we provide a numerical example to illustrate the efficacy of the proposed adaptive control architecture.

Journal ArticleDOI
TL;DR: In this paper, the direct yaw-moment control strategies are proposed for in-wheel electric vehicles by using sliding mode (SM) and nonlinear disturbance observer (NDOB) techniques and the proposed SOSM controller is shown to be more effective.
Abstract: The direct yaw-moment control system can significantly enhance vehicle stability in critical situations. In this paper, the direct yaw-moment control strategies are proposed for in-wheel electric vehicles by using sliding mode (SM) and nonlinear disturbance observer (NDOB) techniques. The ideal sideslip angle at the center of gravity and the yaw rate are first calculated based on a linear two degree of freedom vehicle model. Then, the actual sideslip angle is identified and estimated by constructing a state observer. On this basis, a traditional discontinuous SM direct yaw-moment controller is designed to guarantee that the sideslip angle and the yaw rate will approach the ideal ones as closely as possible. To tackle the chattering problem existing in the traditional SM controller, a second-order sliding mode (SOSM) controller is further designed by taking the derivative of the controller as the new control, which implies that the actual control can be an integration of the SOSM controller. Finally, to avoid the large gains in the derived controllers, by combining the NDOB with the derived controllers, the composite control schemes are also proposed. In comparison with the discontinuous first-order SM controller, the proposed SOSM controller is shown to be more effective.

Journal ArticleDOI
TL;DR: In this paper, an alternative control framework that integrates local path planning and path tracking using model predictive control (MPC) is presented. But the controller is not designed for autonomous vehicles.

Journal ArticleDOI
TL;DR: A novel NN adaptive output-feedback FTC approach is developed that can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero.
Abstract: The problem of active fault-tolerant control (FTC) is investigated for the large-scale nonlinear systems in nonstrict-feedback form. The nonstrict-feedback nonlinear systems considered in this paper consist of unstructured uncertainties, unmeasured states, unknown interconnected terms, and actuator faults (e.g., bias fault and gain fault). A state observer is designed to solve the unmeasurable state problem. Neural networks (NNs) are used to identify the unknown lumped nonlinear functions so that the problems of unstructured uncertainties and unknown interconnected terms can be solved. By combining the adaptive backstepping design principle with the combination Nussbaum gain function property, a novel NN adaptive output-feedback FTC approach is developed. The proposed FTC controller can guarantee that all signals in all subsystems are bounded, and the tracking errors for each subsystem converge to a small neighborhood of zero. Finally, numerical results of practical examples are presented to further demonstrate the effectiveness of the proposed control strategy.

Journal ArticleDOI
TL;DR: An extended droop control (EDC) strategy to achieve dynamic current sharing autonomously during sudden load change and resource variations for hybrid energy storage system is proposed.
Abstract: Power allocation is a major concern in hybrid energy storage system. This paper proposes an extended droop control (EDC) strategy to achieve dynamic current sharing autonomously during sudden load change and resource variations. The proposed method consists of a virtual resistance droop controller and a virtual capacitance droop controller for energy storages with complementary characteristics, such as battery and supercapacitor (SC). By using this method, battery provides consistent power and SC only compensates high-frequency fluctuations without the involvement of conventionally used centralized controllers. To implement the proposed EDC method, a detailed design procedure is proposed to achieve the control objectives of stable operation, voltage regulation, and dynamic current sharing. System dynamic model and relevant impedances are derived and detailed frequency domain analysis is performed. Moreover, the system level stability analysis is investigated and system expansion with the proposed method is illustrated. Both simulations and experiments are conducted to validate the effectiveness of the proposed control strategy and analytical results.