scispace - formally typeset
Search or ask a question
Topic

Convection

About: Convection is a research topic. Over the lifetime, 39609 publications have been published within this topic receiving 916854 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid and concluded that only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids.
Abstract: Nanofluids are engineered colloids made of a base fluid and nanoparticles (1-100 nm) Nanofluids have higher thermal conductivity' and single-phase heat transfer coefficients than their base fluids In particular the heat transfer coefficient increases appear to go beyond the mere thermal-conductivity effect, and cannot be predicted by traditional pure-fluid correlations such as Dittus-Boelter's In the nanofluid literature this behavior is generally attributed to thermal dispersion and intensified turbulence, brought about by nanoparticle motion To test the validity of this assumption, we have considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid These are inertia, Brownian diffusion, thermophoresis, diffusioplwresis, Magnus effect, fluid drainage, and gravity We concluded that, of these seven, only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids Based on this finding, we developed a two-component four-equation nonhomogeneous equilibrium model for mass, momentum, and heat transport in nanofluids A nondimensional analysis of the equations suggests that energy transfer by nanoparticle dispersion is negligible, and thus cannot explain the abnormal heat transfer coefficient increases Furthermore, a comparison of the nanoparticle and turbulent eddy time and length scales clearly indicates that the nanoparticles move homogeneously with the fluid in the presence of turbulent eddies so an effect on turbulence intensity is also doubtful Thus, we propose an alternative explanation for the abnormal heat transfer coefficient increases: the nanofluid properties may vary significantly within the boundary layer because of the effect of the temperature gradient and thermophoresis For a heated fluid, these effects can result in a significant decrease of viscosity within the boundary layer, thus leading to heat transfer enhancement A correlation structure that captures these effects is proposed

5,329 citations

Book
01 Jan 1966
TL;DR: In this article, the echangeurs de : chaleur, couche de : limite, modeles de : turbulence, transfert de masse reference record created on 2005-11-18, modified on 2016-08-08
Abstract: Keywords: echangeurs de : chaleur ; couche : limite ; modeles de : turbulence ; transfert de masse Reference Record created on 2005-11-18, modified on 2016-08-08

4,465 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

4,243 citations

Journal ArticleDOI
TL;DR: In this paper, a water-cooled integral heat sink for silicon integrated circuits has been designed and tested at a power density of 790 W/cm2, with a maximum substrate temperature rise of 71°C above the input water temperature.
Abstract: The problem of achieving compact, high-performance forced liquid cooling of planar integrated circuits has been investigated. The convective heat-transfer coefficient h between the substrate and the coolant was found to be the primary impediment to achieving low thermal resistance. For laminar flow in confined channels, h scales inversely with channel width, making microscopic channels desirable. The coolant viscosity determines the minimum practical channel width. The use of high-aspect ratio channels to increase surface area will, to an extent, further reduce thermal resistance. Based on these considerations, a new, very compact, water-cooled integral heat sink for silicon integrated circuits has been designed and tested. At a power density of 790 W/cm2, a maximum substrate temperature rise of 71°C above the input water temperature was measured, in good agreement with theory. By allowing such high power densities, the heat sink may greatly enhance the feasibility of ultrahigh-speed VLSI circuits.

4,214 citations

Journal ArticleDOI
TL;DR: In this paper, the second edition of the Second edition, the authors present a list of symbolic symbols for the field of environmental physical sciences, including the following: 1.GAS LAWS Pressure, volume and temperature Specific heats Lapse rate Water and water vapour Other gases 3. TRANSPORT LAWS General transfer equation Molecular transfer processes Diffusion coefficients Radiation laws 4. RADI ENVIRONMENT Solar radiation Terrestrial radiation Net radiation 5. MICROCLIMATOLOGY OF RADIATION (i) Interception Direct solar radiation Diffuse radiation Radiation in
Abstract: PREFACE TO THE SECOND EDITION LIST OF SYMBOLS 1. SCOPE OF ENVIRONMENTAL PHYSICS 2. GAS LAWS Pressure, volume and temperature Specific heats Lapse rate Water and water vapour Other gases 3. TRANSPORT LAWS General transfer equation Molecular transfer processes Diffusion coefficients Radiation laws 4. RADIATION ENVIRONMENT Solar radiation Terrestrial radiation Net radiation 5. MICROCLIMATOLOGY OF RADIATION (i) Interception Direct solar radiation Diffuse radiation Radiation in crop canopies 6. MICROCLIMATOLOGY OF RADIATION (ii) Absorption and reflection Radiative properties of natural materials Net radiation 7. MOMENTUM TRANSFER Boundary layers Wind profiles and drag on uniform surfaces Lodging and windthrow 8. HEAT TRANSFER Convection Non-dimensional groups Measurements of convection Conduction Insulation of animals 9. MASS TRANSFER (i) Gases and water vapour Non-dimensional groups Measurement of mass transfer Ventilation Mass transfer through pores Coats and clothing 10.MASS TRANSFER (ii) Particles Steady motion 11.STEADY STATE HEAT BALANCE (i) Water surfaces and vegetation Heat balance equation Heat balance of thermometers Heat balance of surfaces Developments from the Penman Equation 12.STEADY STATE HEAT BALANCE (ii) Animals Heat balance components The thermo-neutral diagram Specification of the environment Case studies 13.TRANSIENT HEAT BALANCE Time constant General cases Heat flow in soil 14.CROP MICROMETEOROLOGY (i) Profiles and fluxes Profiles Profile equations and stability Measurement of flux above the canopy 15.CROP MICROMETEOROLOGY (ii) Interpretation of measurements Resistance analogues Case studies: Water vapour and transpiration Carbon dioxide and growth Sulphur dioxide and pollutant fluxes to crops Transport within canopies APPENDIX BIBLIOGRAPHY REFERENCES INDEX

4,087 citations


Network Information
Related Topics (5)
Boundary layer
64.9K papers, 1.4M citations
91% related
Turbulence
112.1K papers, 2.7M citations
90% related
Heat transfer
181.7K papers, 2.9M citations
86% related
Reynolds number
68.4K papers, 1.6M citations
86% related
Magnetic field
167.5K papers, 2.3M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,709
20223,107
20211,353
20201,414
20191,430