scispace - formally typeset
Search or ask a question

Showing papers on "Convection published in 2006"


Journal ArticleDOI
TL;DR: In this article, the authors considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid and concluded that only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids.
Abstract: Nanofluids are engineered colloids made of a base fluid and nanoparticles (1-100 nm) Nanofluids have higher thermal conductivity' and single-phase heat transfer coefficients than their base fluids In particular the heat transfer coefficient increases appear to go beyond the mere thermal-conductivity effect, and cannot be predicted by traditional pure-fluid correlations such as Dittus-Boelter's In the nanofluid literature this behavior is generally attributed to thermal dispersion and intensified turbulence, brought about by nanoparticle motion To test the validity of this assumption, we have considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid These are inertia, Brownian diffusion, thermophoresis, diffusioplwresis, Magnus effect, fluid drainage, and gravity We concluded that, of these seven, only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids Based on this finding, we developed a two-component four-equation nonhomogeneous equilibrium model for mass, momentum, and heat transport in nanofluids A nondimensional analysis of the equations suggests that energy transfer by nanoparticle dispersion is negligible, and thus cannot explain the abnormal heat transfer coefficient increases Furthermore, a comparison of the nanoparticle and turbulent eddy time and length scales clearly indicates that the nanoparticles move homogeneously with the fluid in the presence of turbulent eddies so an effect on turbulence intensity is also doubtful Thus, we propose an alternative explanation for the abnormal heat transfer coefficient increases: the nanofluid properties may vary significantly within the boundary layer because of the effect of the temperature gradient and thermophoresis For a heated fluid, these effects can result in a significant decrease of viscosity within the boundary layer, thus leading to heat transfer enhancement A correlation structure that captures these effects is proposed

5,329 citations


Journal ArticleDOI
TL;DR: In this paper, the authors studied the heat transfer behavior of aqueous suspensions of multi-walled carbon nanotubes (CNT nanofluids) flowing through a horizontal tube.

1,334 citations


Journal ArticleDOI
TL;DR: The LMDZ4 general circulation model is the atmospheric component of the IPSL-CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report.
Abstract: The LMDZ4 general circulation model is the atmospheric component of the IPSL–CM4 coupled model which has been used to perform climate change simulations for the 4th IPCC assessment report. The main aspects of the model climatology (forced by observed sea surface temperature) are documented here, as well as the major improvements with respect to the previous versions, which mainly come form the parametrization of tropical convection. A methodology is proposed to help analyse the sensitivity of the tropical Hadley–Walker circulation to the parametrization of cumulus convection and clouds. The tropical circulation is characterized using scalar potentials associated with the horizontal wind and horizontal transport of geopotential (the Laplacian of which is proportional to the total vertical momentum in the atmospheric column). The effect of parametrized physics is analysed in a regime sorted framework using the vertical velocity at 500 hPa as a proxy for large scale vertical motion. Compared to Tiedtke’s convection scheme, used in previous versions, the Emanuel’s scheme improves the representation of the Hadley–Walker circulation, with a relatively stronger and deeper large scale vertical ascent over tropical continents, and suppresses the marked patterns of concentrated rainfall over oceans. Thanks to the regime sorted analyses, these differences are attributed to intrinsic differences in the vertical distribution of convective heating, and to the lack of self-inhibition by precipitating downdraughts in Tiedtke’s parametrization. Both the convection and cloud schemes are shown to control the relative importance of large scale convection over land and ocean, an important point for the behaviour of the coupled model.

831 citations


Book
01 Dec 2006
TL;DR: In this paper, the authors present an overview of the basic concepts in Heat Conduction Equation (HCE) and its application in the context of refrigeration and freezing of foods.
Abstract: 1 Introduction and Basic Concepts 2 Heat Conduction Equation 3 Steady Heat Conduction 4 Transient Heat Conduction 5 Numerical Methods in Heat Conduction 6 Fundamentals of Convection 7 External Forced Convection 8 Internal Forced Convection 9 Natural Convection 10 Boiling and Condensation 11 Heat Exchangers 12 Fundamentals of Radiation 13 Radiation Heat Transfer 14 Mass Transfer Appendix 1 Property Tables and Charts (SI Units) Appendix 2 Property Tables and Charts (English Units) Appendix 3 Introduction to EES Online Chapters 15 Cooling of Electronic Equipment 16 Heating and Cooling of Buildings 17 Refrigeration and Freezing of Foods

816 citations


Journal ArticleDOI
TL;DR: In this paper, a linear stability analysis of density-driven miscible flow in porous media in the context of carbon dioxide sequestration in saline aquifers is presented, based on the dominant mode of the self-similar diffusion operator, which can accurately predict the critical time and associated unstable wavenumber.
Abstract: We present a linear stability analysis of density-driven miscible flow in porous media in the context of carbon dioxide sequestration in saline aquifers. Carbon dioxide dissolution into the underlying brine leads to a local density increase that results in a gravitational instability. The physical phenomenon is analogous to the thermal convective instability in a semi-infinite domain, owing to a step change in temperature at the boundary. The critical time for the onset of convection in such problems has not been determined accurately by previous studies. We present a solution, based on the dominant mode of the self-similar diffusion operator, which can accurately predict the critical time and the associated unstable wavenumber. This approach is used to explain the instability mechanisms of the critical time and the long-wave cutoff in a semi-infinite domain. The dominant mode solution, however, is valid only for a small parameter range. We extend the analysis by employing the quasi-steady-state approximation (QSSA) which provides accurate solutions in the self-similar coordinate system. For large times, both the maximum growth rate and the most dangerous mode decay as , respectively. The instability problem is also analysed in the nonlinear regime by high-accuracy direct numerical simulations. The nonlinear simulations at short times show good agreement with the linear stability predictions. At later times, macroscopic fingers display intense nonlinear interactions that significantly influence both the front propagation speed and the overall mixing rate. A dimensional analysis for typical aquifers shows that for a permeability variation of 1—3000 mD, the critical time can vary from 2000 yrs to about 10 days while the critical wavelength can be between 200 m and 0.3 m.

664 citations


Journal ArticleDOI
TL;DR: In this article, the authors show that the enhancement in the effective thermal conductivity of nanofluids is due mainly to localized convection caused by the Brownian movement of the nanoparticles.
Abstract: Here we show through an order-of-magnitude analysis that the enhancement in the effective thermal conductivity of nanofluids is due mainly to the localized convection caused by the Brownian movement of the nanoparticles. We also introduce a convective-conductive model which accurately captures the effects of particle size, choice of base liquid, thermal interfacial resistance between the particles and liquid, temperature, etc. This model is a combination of the Maxwell-Garnett (MG) conduction model and the convection caused by the Brownian movement of the nanoparficles, and reduces to the MG model for large particle sizes. The model is in good agreement with data on water, ethylene glycol, and oil-based nanofluids, and shows that the lighter the nanoparticles, the greater the convection effect in the liquid, regardless of the thermal conductivity of the nanoparticles.

512 citations


Journal ArticleDOI
TL;DR: In this paper, a simplified moist general circulation model is developed and used to study changes in the atmospheric general circulation as the water vapor content of the atmosphere is altered, and the key elements of the model physics are gray radiative transfer, in which water vapor and other constituents have no effect on radiative fluxes, a simple diffusive boundary layer with prognostic depth, and a mixed layer aquaplanet surface boundary condition.
Abstract: In this paper, a simplified moist general circulation model is developed and used to study changes in the atmospheric general circulation as the water vapor content of the atmosphere is altered. The key elements of the model physics are gray radiative transfer, in which water vapor and other constituents have no effect on radiative fluxes, a simple diffusive boundary layer with prognostic depth, and a mixed layer aquaplanet surface boundary condition. This GCM can be integrated stably without a convection parameterization, with large-scale condensation only, and this study focuses on this simplest version of the model. These simplifications provide a useful framework in which to focus on the interplay between latent heat release and large-scale dynamics. In this paper, the authors study the role of moisture in determining the tropospheric static stability and midlatitude eddy scale. In a companion paper, the effects of moisture on energy transports by baroclinic eddies are discussed. The authors ...

390 citations


Journal ArticleDOI
TL;DR: In this article, the authors developed a numerical model in the HYDRUS-1D code that solves the coupled equations governing liquid water, water vapor, and heat transport, together with the surface water and energy balance, and provides flexibility in accommodating various types of meteorological information to solve the surface energy balance.
Abstract: Vapor movement is often an important part in the total water flux in the vadose zone of arid or semiarid regions because the soil moisture is relatively low. The two major objectives of this study were to develop a numerical model in the HYDRUS-1D code that (i) solves the coupled equations governing liquid water, water vapor, and heat transport, together with the surface water and energy balance, and (ii) provides flexibility in accommodating various types of meteorological information to solve the surface energy balance. The code considers the movement of liquid water and water vapor in the subsurface to be driven by both pressure head and temperature gradients. The heat transport module considers movement of soil heat by conduction, convection of sensible heat by liquid water flow, transfer of latent heat by diffusion of water vapor, and transfer of sensible heat by diffusion of water vapor. The modifications allow a very flexible way of using various types of meteorological information at the soil–atmosphere interface for evaluating the surface water and energy balance. The coupled model was evaluated using field soil temperature and water content data collected at a field site. We demonstrate the use of standard daily meteorological variables in generating diurnal changes in these variables and their subsequent use for calculating continuous changes in water contents and temperatures in the soil profile. Simulated temperatures and water contents were in good agreement with measured values. Analyses of the distributions of the liquid and vapor fluxes vs. depth showed that soil water dynamics are strongly associated with the soil temperature regime.

359 citations


Journal ArticleDOI
TL;DR: The Hadley Centre Global Environmental Model (HadGEM1) as discussed by the authors is a global environmental model that uses semi-Lagrangian instead of Eulerian advection.
Abstract: The atmospheric component of the new Hadley Centre Global Environmental Model (HadGEM1) is described and an assessment of its mean climatology presented. HadGEM1 includes substantially improved representations of physical processes, increased functionality, and higher resolution than its predecessor, the Third Hadley Centre Coupled Ocean–Atmosphere General Circulation Model (HadCM3). Major developments are the use of semi-Lagrangian instead of Eulerian advection for both dynamical and tracer fields; new boundary layer, gravity wave drag, microphysics, and sea ice schemes; and major changes to the convection, land surface (including tiled surface characteristics), and cloud schemes. There is better coupling between the atmosphere, land, ocean, and sea ice subcomponents and the model includes an interactive aerosol scheme, representing both the first and second indirect effects. Particular focus has been placed on improving the processes (such as clouds and aerosol) that are most uncertain in proje...

339 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated why a similar progression of events (life cycle) is observed for tropical weather fluctuations with time scales of hours, days, and even weeks using point data.

324 citations


Journal ArticleDOI
TL;DR: In this paper, a high-resolution simulation of shallow-to-deep convection transition based on idealization of observations made during the Large-Scale Biosphere-Atmosphere (LBA) experiment in Amazonia, Brazil, during the Tropical Rainfall Measuring Mission (TRMM)-LBA mission on 23 February.
Abstract: Results are presented from a high-resolution three-dimensional simulation of shallow-to-deep convection transition based on idealization of observations made during the Large-Scale Biosphere–Atmosphere (LBA) experiment in Amazonia, Brazil, during the Tropical Rainfall Measuring Mission (TRMM)-LBA mission on 23 February. The doubly periodic grid has 1536 1536 256 grid cells with horizontal grid spacing of 100 m, thus covering an area of 154 154 km 2 . The vertical resolution varies from 50 m in the boundary layer to 100 m in the free troposphere and gradually coarsens to 250 m near the domain top at 25.4 km. The length of the simulation is 6 h, starting from an early morning sounding corresponding to 0730 local time. Convection is forced by prescribed surface latent and sensible heat fluxes and prescribed horizontally uniform radiative heating Despite a considerable amount of convective available potential energy (CAPE) in the range of 1600– 2400 J kg 1 , and despite virtually no convective inhibition (CIN) in the mean sounding throughout the simulation, the cumulus convection starts as shallow, gradually developing into congestus, and becomes deep only toward the end of simulation. Analysis shows that the reason is that the shallow clouds generated by the boundary layer turbulence are too small to penetrate deep into the troposphere, as they are quickly diluted by mixing with the environment. Precipitation and the associated cold pools are needed to generate thermals big enough to support the growth of deep clouds. This positive feedback involving precipitation is supported by a sensitivity experiment in which the cold pools are effectively eliminated by artificially switching off the evaporation of precipitation; in the experiment, the convection remains shallow throughout the entire simulation, with a few congestus but no deep clouds. The probability distribution function (PDF) of cloud size during the shallow, congestus, and deep phases is analyzed using a new method. During each of the three phases, the shallow clouds dominate the mode of the PDFs at about 1-km diameter. During the deep phase, the PDFs show cloud bases as wide as 4 km. Analysis of the joint PDFs of cloud size and in-cloud variables demonstrates that, as expected, the bigger clouds are far less diluted above their bases than their smaller counterparts. Also, thermodynamic properties at cloud bases are found to be nearly identical for all cloud sizes, with the moist static energy exceeding the mean value by as much as 4 kJ kg 1 . The width of the moist static energy distribution in the boundary layer is mostly due to variability of water vapor; therefore, clouds appear to grow from the air with the highest water vapor content available. No undiluted cloudy parcels are found near the level of neutral buoyancy. It appears that a simple entraining-plume model explains the entrainment rates rather well. The least diluted plumes in the simulation correspond to an entrainment parameter of about 0.1 km 1 .

Journal ArticleDOI
TL;DR: In this article, the role of thermal wind balance and tachocline-induced entropy variations in maintaining the solar differential rotation is discussed, and the relative amplitude of the imposed entropy variations is of order 10 � 5, corresponding to a latitudinal temperature variation of about 10 K.
Abstract: Three-dimensional simulations of solar convection in spherical shells are used to evaluate the differential rotation that results as thermal boundary conditions are varied. In some simulations a latitudinal entropy variation is imposed at the lower boundary in order to take into account the coupling between the convective envelope and the radiative interior through thermal wind balance in the tachocline. The issue is whether the baroclinic forcing arising from tachocline-induced entropy variations can break the tendency for numerical simulations of convection to yield cylindrical rotation profiles, unlike the conical profiles deduced from helioseismology. As the amplitude of the imposed variation is increased, cylindrical rotation profiles do give way to more conical profiles that exhibit nearly radial angular velocity contours at midlatitudes. Conical rotation profiles are maintained primarily by the resolved convective heat flux, which transmits entropy variations from the lower boundary into the convective envelope, giving rise to baroclinic forcing. The relative amplitude of the imposed entropy variations is of order 10 � 5 , corresponding to a latitudinal temperature variation of about 10 K. The role of thermal wind balance and tachoclineinduced entropy variations in maintaining the solar differential rotation is discussed. Subject headingg convection — Sun: interior — Sun: rotation

Journal ArticleDOI
TL;DR: In this paper, a model convective parameterization highlighting the dynamic role of the three cloud types is developed through two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with low-level heating and cooling corresponding respectively to congestus and stratiform clouds.
Abstract: Recent observational analysis reveals the central role of three multicloud types, congestus, stratiform, and deep convective cumulus clouds, in the dynamics of large-scale convectively coupled Kelvin waves, westward-propagating two-day waves, and the Madden–Julian oscillation. A systematic model convective parameterization highlighting the dynamic role of the three cloud types is developed here through two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with low-level heating and cooling corresponding respectively to congestus and stratiform clouds. A systematic moisture equation is developed where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep convective precipitation. A nonlinear switch is developed that favors either deep or congestus convection depending on the relative dryness of the troposphere; in particular, a dry troposphere...

Journal ArticleDOI
TL;DR: In this paper, a numerical method based on the control volume approach was used to solve the system of nonlinear and coupled governing equations of a turbulent flow of nanofluids, which are composed of saturated water and Al2O3 nanoparticles at various concentrations, flowing inside a tube submitted to uniform wall heat flux boundary condition.
Abstract: Purpose – To study the hydrodynamic and thermal behaviors of a turbulent flow of nanofluids, which are composed of saturated water and Al2O3 nanoparticles at various concentrations, flowing inside a tube submitted to a uniform wall heat flux boundary condition.Design/methodology/approach – A numerical method based on the “control‐volume” approach was used to solve the system of non‐linear and coupled governing equations. The classical κ‐e model was employed in order to model the turbulence, together with staggered non‐uniform grid system. The computer model, satisfactorily validated, was used to perform an extended parametric study covering wide ranges of the governing parameters. Information regarding the hydrodynamic and thermal behaviors of nanofluid flow are presented.Findings – Numerical results show that the inclusion of nanoparticles into the base fluid has produced an augmentation of the heat transfer coefficient, which has been found to increase appreciably with an increase of particles volume co...

Journal ArticleDOI
TL;DR: In this article, the mean structure of African easterly waves over West Africa and the adjacent Atlantic is isolated by projecting dynamical fields from reanalysis and radiosonde data onto space-time-filtered satellite-derived outgoing longwave radiation.
Abstract: The mean structure of African easterly waves (AEWs) over West Africa and the adjacent Atlantic is isolated by projecting dynamical fields from reanalysis and radiosonde data onto space–time-filtered satellite-derived outgoing longwave radiation. These results are compared with previous studies and an idealized modeling study in a companion paper, which provides evidence that the waves bear a close structural resemblance to the fastest-growing linear normal mode of the summertime basic-state flow over Africa. There is a significant evolution in the three-dimensional structure of AEWs as they propagate along 10°N across West Africa. At this latitude, convection occurs in northerly flow to the east of the Greenwich meridian, then shifts into the wave trough, and finally into southerly flow as the waves propagate offshore into the Atlantic ITCZ. In contrast, to the north of the African easterly jet along 15°N convection remains in southerly flow throughout the waves' trajectory. Along 10°N over West Africa, the location of convection is consistent with the adiabatic dynamical forcing implied by the advection of perturbation vorticity by the mean thermal wind in the zonal direction, as in the companion paper. Offshore, and along 15°N, the relationship between the convection and dynamics is more complex, and not as easily explained in terms of dynamical forcing alone.

Journal ArticleDOI
TL;DR: Magnetohydrodynamic simulations of fully convective, rotating spheres with volume heating near the center and cooling at the surface are presented in this article, where the dynamo-generated magnetic field saturates at equipartition field strength near the surface.
Abstract: Magnetohydrodynamic simulations of fully convective, rotating spheres with volume heating near the center and cooling at the surface are presented. The dynamo-generated magnetic field saturates at equipartition field strength near the surface. In the interior, the field is dominated by small-scale structures, but outside the sphere, by the global scale. Azimuthal averages of the field reveal a large-scale field of smaller amplitude also inside the star. The internal angular velocity shows some tendency to be constant along cylinders and is antisolar (fastest at the poles and slowest at the equator).

Journal ArticleDOI
TL;DR: In this paper, an idealized, high-resolution simulation of a gradually forced transition from shallow, nonprecipitating to deep, precipitating cumulus convection is described; how the cloud and transport statistics evolve as the convection deepens is explored; and the collected statistics are used to evaluate assumptions in current cumulus schemes.
Abstract: In this paper, an idealized, high-resolution simulation of a gradually forced transition from shallow, nonprecipitating to deep, precipitating cumulus convection is described; how the cloud and transport statistics evolve as the convection deepens is explored; and the collected statistics are used to evaluate assumptions in current cumulus schemes. The statistical analysis methodologies that are used do not require tracing the history of individual clouds or air parcels; instead they rely on probing the ensemble characteristics of cumulus convection in the large model dataset. They appear to be an attractive way for analyzing outputs from cloud-resolving numerical experiments. Throughout the simulation, it is found that 1) the initial thermodynamic properties of the updrafts at the cloud base have rather tight distributions; 2) contrary to the assumption made in many cumulus schemes, nearly undiluted air parcels are too infrequent to be relevant to any stage of the simulated convection; and 3) a simple model with a spectrum of entraining plumes appears to reproduce most features of the cloudy updrafts, but significantly overpredicts the mass flux as the updrafts approach their levels of zero buoyancy. A buoyancy-sorting model was suggested as a potential remedy. The organized circulations of cold pools seem to create clouds with larger-sized bases and may correspondingly contribute to their smaller lateral entrainment rates. Our results do not support a mass-flux closure based solely on convective available potential energy (CAPE), and are in general agreement with a convective inhibition (CIN)-based closure. The general similarity in the ensemble characteristics of shallow and deep convection and the continuous evolution of the thermodynamic structure during the transition provide justification for developing a single unified cumulus parameterization that encompasses both shallow and deep convection.

Journal ArticleDOI
03 Feb 2006-Science
TL;DR: The results, which demonstrate that fully convective stars are able to trigger axisymmetric large-scale poloidal fields without differential rotation, challenge existing theoretical models of field generation in cool stars.
Abstract: Understanding how cool stars produce magnetic fields within their interiors is crucial for predicting the impact of such fields, such as the activity cycle of the Sun. In this respect, studying fully convective stars enables us to investigate the role of convective zones in magnetic field generation. We produced a magnetic map of a rapidly rotating, very-low-mass, fully convective dwarf through tomographic imaging from time series of spectropolarimetric data. Our results, which demonstrate that fully convective stars are able to trigger axisymmetric large-scale poloidal fields without differential rotation, challenge existing theoretical models of field generation in cool stars.

Journal ArticleDOI
TL;DR: In this paper, the first results from three-dimensional spherical shell simulations of magnetic dynamo action realized by turbulent convection penetrating downward into a tachocline of rotational shear are presented.
Abstract: We present the first results from three-dimensional spherical shell simulations of magnetic dynamo action realized by turbulent convection penetrating downward into a tachocline of rotational shear. This permits us to assess several dynamical elements believed to be crucial to the operation of the solar global dynamo, variously involving differential rotation resulting from convection, magnetic pumping, and amplification of fields by stretching within the tachocline. The simulations reveal that strong axisymmetric toroidal magnetic fields (about 3000 G in strength) are realized within the lower stable layer, unlike in the convection zone where fluctuating fields are predominant. The toroidal fields in the stable layer possess a striking persistent antisymmetric parity, with fields in the northern hemisphere largely of opposite polarity to those in the southern hemisphere. The associated mean poloidal magnetic fields there have a clear dipolar geometry, but we have not yet observed any distinctive reversals or latitudinal propagation. The presence of these deep magnetic fields appears to stabilize the sense of mean fields produced by vigorous dynamo action in the bulk of the convection zone.

Journal ArticleDOI
TL;DR: In this paper, two methods are discussed in detail which can provide the information about the entropy production with different degrees of accuracy, which can be determined in the post processing phase of a CFD calculation.
Abstract: Computational fluid dynamics (CFD) solutions of turbulent convective heat transfer problems based on the mass, momentum and energy conservation principle provide all information to calculate the entropy production rate in such a transfer process. It can be determined in the post processing phase of a CFD calculation. Two methods are discussed in detail which can provide the information about the entropy production with different degrees of accuracy.

Journal ArticleDOI
TL;DR: In this article, a toy model is analyzed in order to evaluate the linear stability of the gain region immediately behind a stalled accretion shock, after core bounce, and it is shown that a negative entropy gradient is not sufficient to warrant linear instability.
Abstract: A toy model is analyzed in order to evaluate the linear stability of the gain region immediately behind a stalled accretion shock, after core bounce. This model demonstrates that a negative entropy gradient is not sufficient to warrant linear instability. The stability criterion is governed by the ratio χ of the advection time through the gain region divided by the local timescale of buoyancy. The gain region is linearly stable if χ 3, perturbations are unstable in a limited range of horizontal wavelengths centered around twice the vertical size H of the gain region. The threshold horizontal wavenumbers kmin and kmax follow simple scaling laws such that Hkmin ∝ 1/χ and Hkmax ∝ χ. The convective stability of the l = 1 mode in spherical accretion is discussed, in relation with the asymmetric explosion of core-collapse supernovae. The advective stabilization of long-wavelength perturbations weakens the possible influence of convection alone on a global l = 1 mode.

Journal ArticleDOI
TL;DR: In this article, a simulation of 3D radiative magneto-convection in a strong background magnetic field corresponding to the conditions in sunspot umbrae is shown.
Abstract: Results from a realistic simulation of 3D radiative magneto-convection in a strong background magnetic field corresponding to the conditions in sunspot umbrae are shown. The convective energy transport is dominated by narrow upflow plumes with adjacent downflows, which become almost field-free near the surface layers. The strong external magnetic field forces the plumes to assume a cusp-like shape in their top parts, where the upflowing plasma loses its buoyancy. The resulting bright features in intensity images correspond well (in terms of brightness, size, and lifetime) to the observed umbral dots in the central parts of sunspot umbrae. Most of the simulated umbral dots have a horizontally elongated form with a central dark lane. Above the cusp, most plumes show narrow upflow jets, which are driven by the pressure of the piled-up plasma below. The large velocities and low field strengths in the plumes are effectively screened from spectroscopic observation because the surfaces of equal optical depth are locally elevated, so that spectral lines are largely formed above the cusp. Our simulations demonstrate that nearly field-free upflow plumes and umbral dots are a natural result of convection in a strong, initially monolithic magnetic field.

Journal ArticleDOI
TL;DR: In this article, the authors investigate the diurnal cycle and convection during the rainy season in Amazonia and compare single-column models (SCMs) and cloud-resolving models (CRMs).
Abstract: This paper investigates daytime convective development over land and its representation in single-column models (SCMs) and cloud-resolving models (CRMs). A model intercomparison case is developed based on observations of the diurnal cycle and convection during the rainy season in Amazonia. The focus is on the 6 h period between sunrise and early afternoon which was identified in previous studies as critical for the diurnal cycle over summertime continents in numerical weather prediction and climate models. This period is characterized by the formation and growth of a well-mixed convective boundary layer from the early morning temperature and moisture profiles as the surface sensible- and latent-heat fluxes increase after sunrise. It proceeds with the formation of shallow convective clouds as the convective boundary layer deepens, and leads to the eventual transition from shallow to deep precipitating convection around local noon. To provide a benchmark for other models, a custom-designed set of simulations, applying increasing in time computational domain and decreasing spatial resolution, was executed. The SCMs reproduced the previously identified problem with premature development of deep convection, less than two hours after sunrise. The benchmark simulations suggest a possible route to improve SCMs by considering a time-evolving cumulus entrainment rate as convection evolves from shallow to deep and the cloud width increases up to an order of magnitude. The CRMs featuring horizontal grid length around 500 m are capable of capturing the qualitative aspects of the benchmark simulations, but there are significant differences among the models. Two-dimensional CRMs tend to simulate too rapid a transition from shallow to deep convection and too high a cloud cover. Copyright © 2006 Royal Meteorological Society

Journal ArticleDOI
TL;DR: In this article, the authors investigated two mechanisms by which degree-1 convection may be initiated in the Martian mantle: (1) an endothermic phase change near the CMB and (2) viscosity layering in the mid-mantle.
Abstract: [1] The surface of Mars appears dramatically different between the northern and southern hemispheres. Any endogenic origin for this hemispheric dichotomy must involve a pattern of mantle convection that reflects the shape of the dichotomy, primarily spherical harmonic degree-1. We investigated two mechanisms by which degree-1 convection may be initiated in the Martian mantle: (1) an endothermic phase change near the CMB and (2) viscosity layering in the mid-mantle. Using two-dimensional (2-D) and 3-D spherical finite-element convection models, we explored the conditions under which each mechanism can produce degree-1 structures. The phase transition is only effective at generating degree-1 structures when the mantle viscosity is constant or weakly temperature-dependent (activation energy <100 kJ/mol), but the degree-1 pattern requires several billion years to develop. Increasing convective vigor in phase change models leads to reduced wavelengths for convective structures. Degree-1 convection can also develop in a layered viscosity mantle, with temperature- and depth-dependent viscosity. An overall sublithospheric radial viscosity variation of a factor of 100 including a factor of 8–25 jump in the midmantle can lead to formation of degree-1 structure in a timescale ranging from 100 My to several hundred My, consistent with the timescale for the formation of the dichotomy. Neither convective vigor nor the internal heating rate greatly affects the formation of degree-1 structures. We propose that degree-1 mantle convection induced by a layered viscosity structure may be responsible for the formation of the crustal dichotomy.

Journal ArticleDOI
TL;DR: In this article, the instability of the spherically symmetric standing accretion shock wave against nonspherical perturbations was studied in the postbounce phase of supernovae.
Abstract: We have numerically studied the instability of the spherically symmetric standing accretion shock wave against nonspherical perturbations. We have in mind the application to collapse-driven supernovae in the postbounce phase, where the prompt shock wave generated by core bounce is commonly stalled. We take an experimental standpoint in this paper. Using spherically symmetric, completely steady, shocked accretion flows as unperturbed states, we have clearly observed both the linear growth and the subsequent nonlinear saturation of the instability. In so doing, we have employed a realistic equation of state, together with heating and cooling via neutrino reactions with nucleons. We have performed a mode analysis based on the spherical harmonics decomposition and found that the modes with l = 1,2 are dominant not only in the linear regime but also after nonlinear couplings generate various modes and saturation occurs. By varying the neutrino luminosity, we have constructed unperturbed states both with and without a negative entropy gradient. We have found that in both cases the growth of the instability is similar, suggesting that convection does not play a dominant role, which also appears to be supported by the recent linear analysis of the convection in accretion flows by Foglizzo et al. The oscillation period of the unstable l = 1 mode is found to fit better with the advection time rather than with the sound crossing time. Whatever the cause may be, the instability favors a shock revival.

Journal ArticleDOI
TL;DR: In this paper, the authors used a reduced system of equations for rotationally constrained convection valid in the asymptotic limit of thin columnar structures and rapid rotation to perform numerical simulation of Rayleigh-B´ enard convection in an infinite layer rotating uniformly about the vertical axis.
Abstract: For rotationally constrained convection, the Taylor–Proudman theorem enforces an organization of nonlinear flows into tall columnar or compact plume structures. While coherent structures in convection under moderate rotation are exclusively cyclonic, recent experiments for rapid rotation have revealed a transition to equal populations of cyclonic and anticyclonic structures. Direct numerical simulation (DNS) of this regime is expensive, however, and existing simulations have yet to reveal anticyclonic vortical structures. In this paper, we use a reduced system of equations for rotationally constrained convection valid in the asymptotic limit of thin columnar structures and rapid rotation to perform numerical simulation of Rayleigh–B´ enard convection in an infinite layer rotating uniformly about the vertical axis. Visualization indicates the existence of cyclonic and anticyclonic vortical populations for all parameters examined. Moreover, it is found that the flow evolves through three distinct regimes with increasing Rayleigh number (Ra). For small, but supercritical Ra ,t he fl ow is dominated by a cellular system of hot and cold columns spanning the fluid layer. As Ra increases, the number density of these columns decreases, the up- and downdrafts within them strengthen and the columns develop opposite-signed ‘sleeves’ in all fields. The resulting columns are highly efficient at transporting heat across the fluid layer. In the final regime, lateral mixing plays a dominant role in the interior and the columnar structure is destroyed. However, thermal plumes are still injected and rejected from the thermal boundary layers. We identify the latter two regimes with the vortex-grid and geostrophic turbulence regimes, respectively. Within these regimes, we investigate convective heat transport (measured by the Nusselt number), mean temperature profiles, and root-mean-square profiles of the temperature, vertical velocity and vertical vorticity anomalies. For all Prandtl numbers investigated, the mean temperature saturates in a non-isothermal profile as Ra increases owing to intense lateral mixing.

Journal ArticleDOI
TL;DR: In this article, the role of sheath dissipation was investigated in the radial convection of isolated filamentary structures in magnetized plasmas and it was shown that sheaths significantly reduced the radial velocity of isolated filaments.
Abstract: Radial convection of isolated filamentary structures due to interchange motions in magnetized plasmas is investigated. Following a basic discussion of vorticity generation, ballooning, and the role of sheaths, a two-field interchange model is studied by means of numerical simulations on a biperiodic domain perpendicular to the magnetic field. It is demonstrated that a blob-like plasma structure develops dipolar vorticity and electrostatic potential fields, resulting in rapid radial acceleration and formation of a steep front and a trailing wake. While the dynamical evolution strongly depends on the amount of collisional diffusion and viscosity, the structure travels a radial distance many times its initial size in all parameter regimes in the absence of sheath dissipation. In the ideal limit, there is an inertial scaling for the maximum radial velocity of isolated filaments. This velocity scales as the acoustic speed times the square root of the structure size relative to the length scale of the magnetic field. The plasma filament eventually decelerates due to mixing and collisional dissipation. Finally, the role of sheath dissipation is investigated. When included in the simulations, it significantly reduces the radial velocity of isolated filaments. The results are discussed in the context of convective transport in scrape-off layer plasmas, comprising both blob-like structures in low confinement modes and edge localized mode filaments in unstable high confinement regimes.

Journal ArticleDOI
24 Nov 2006-Langmuir
TL;DR: Marangoni motion occurs and generates inside the droplet convection cells that furthermore exhibit small fluctuating motion as evaporation goes on, and shows a minimum that indicates the existence of qualitative changes in the evaporative regimes although the droplets is sessile.
Abstract: Evaporation dynamics of small sessile water droplets under microgravity conditions is investigated numerically. The water-air interface is free, and the surrounding air is assumed to be quasisteady. The droplet is described by Navier-Stokes and heat equations and its surrounding water/air gaseous phase with Laplace equation. In the thermodynamic conditions of the simulations presented herein, the evaporative mass flow is nonlinear. It shows a minimum that indicates the existence of qualitative changes in the evaporative regimes although the droplet is sessile. Due to temperature gradients on the free interface, Marangoni motion occurs and generates inside the droplet convection cells that furthermore exhibit small fluctuating motion as evaporation goes on.

Book ChapterDOI
TL;DR: Pan et al. as discussed by the authors described the skin's role in human thermoregulation and comfort, and explained the body's heat exchange mechanisms including sensible heat transfer at the skin surface (via conduction, convection, and radiation (long-wave and short-wave)), latent heat transfer (via moisture evaporating and diffusing through the skin, and through sweat evaporation on the surface), and sensible plus latent exchange via respiration from the lungs.
Abstract: The skin’s role in human thermoregulation and comfort E. A R E N S and H. Z H A N G, University of California, Berkeley, USA Introduction This chapter is intended to explain those aspects of human thermal physiology, heat and moisture transfer from the skin surface, and human thermal comfort, that could be useful for designing clothing and other types of skin covering. Humans maintain their core temperatures within a small range, between 36 and 38°C. The skin is the major organ that controls heat and moisture flow to and from the surrounding environment. The human environment occurs naturally across very wide range of temperatures (100 K) and water vapor pressures (4.7 kPa), and in addition to this, solar radiation may impose heat loads of as much as 0.8 kW per square meter of exposed skin surface. The skin exercises its control of heat and moisture across a 14-fold range of metabolisms, from a person’s basal metabolism (seated at rest) to a trained bicycle racer at maximum exertion. The skin also contains thermal sensors that participate in the thermoregulatory control, and that affect the person’s thermal sensation and comfort. The body’s heat exchange mechanisms include sensible heat transfer at the skin surface (via conduction, convection, and radiation (long-wave and short-wave)), latent heat transfer (via moisture evaporating and diffusing through the skin, and through sweat evaporation on the surface), and sensible plus latent exchange via respiration from the lungs. Dripping of liquid sweat from the body or discharge of bodily fluids cause relatively small amounts of heat exchange, but exposure to rain and other liquids in the environment can cause high rates of heat loss and gain. Clothing is used outside the skin to extend the body’s range of thermoregulatory control and reduce the metabolic cost of thermoregulation. It reduces sensible heat transfer, while in most cases permitting evaporated moisture (latent heat) to escape. Some clothing resists rain penetration, both to prevent the rain from directly cooling the skin, and to prevent the loss of insulation effectiveness within the clothing. Wet clothing will have a higher heat transfer than dry: depending on design, it can range from almost no From Thermal and Moisture Transport in Fibrous Materials, edited by N. Pan and P. Gibson, 2006, with kind permission of Woodhead Publishing Limited

Journal ArticleDOI
TL;DR: In this paper, the authors present three-dimensional model simulations of the injection of fire emissions into the lower stratosphere by pyro-convection, and evaluate these model simulations with observations obtained from the Chisholm fire in Alberta, Canada, in 2001.
Abstract: . Wildland fires in boreal regions have the potential to initiate deep convection, so-called pyro-convection, due to their release of sensible heat. Under favorable atmospheric conditions, large fires can result in pyro-convection that transports the emissions into the upper troposphere and the lower stratosphere. Here, we present three-dimensional model simulations of the injection of fire emissions into the lower stratosphere by pyro-convection. These model simulations are constrained and evaluated with observations obtained from the Chisholm fire in Alberta, Canada, in 2001. The active tracer high resolution atmospheric model (ATHAM) is initialized with observations obtained by radiosonde. Information on the fire forcing is obtained from ground-based observations of the mass and moisture of the burned fuel. Based on radar observations, the pyro-convection reached an altitude of about 13 km, well above the tropopause, which was located at about 11.2 km. The model simulation yields a similarly strong convection with an overshoot of the convection above the tropopause. The main outflow from the pyro-convection occurs at about 10.6 km, but a significant fraction (about 8%) of the emitted mass of the smoke aerosol is transported above the tropopause. In contrast to regular convection, the region with maximum updraft velocity in the pyro-convection is located close to the surface above the fire. This results in high updraft velocities >10 m s−1 at cloud base. The temperature anomaly in the plume decreases rapidly with height from values above 50 K at the fire to about 5 K at about 3000 m above the fire. While the sensible heat released from the fire is responsible for the initiation of convection in the model, the release of latent heat from condensation and freezing dominates the overall energy budget. Emissions of water vapor from the fire do not significantly contribute to the energy budget of the convection.