scispace - formally typeset
Search or ask a question
Topic

Convective available potential energy

About: Convective available potential energy is a research topic. Over the lifetime, 936 publications have been published within this topic receiving 43773 citations. The topic is also known as: CAPE.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discuss the importance of using both observational datasets and higher-resolution modeling in the simulation of lower tropospheric wind profiles, which affect the lower tropical storm relative helicity as one of the key ingredients in mesocyclonic tornadogenesis.
Abstract: An F1 tornado hit the village of Lekarovce in eastern Slovakia on the afternoon of 3 October 2018. The tornado, which occurred outside the main convective season in Slovakia, was not anticipated by the meteorologists of the Slovak Hydrometeorological Institute. The models available to the forecasters simulated an environment of marginal convective available potential energy (CAPE) and weakening vertical wind shear. This paper addresses forecasting challenges associated with events related to a tornado threat. To investigate conditions before tornado formation, observational datasets, including sounding, and vertical-azimuth display (VAD) data from a radar station and surface stations were used. Hodographs based on observational data and a higher-resolution run of the limited-area model showed stronger lower tropospheric shear than was formerly anticipated over the area of interest. The higher-resolution model was able to better represent the modification of the lower tropospheric flow by a mountain chain, which was crucial to maintaining the strong lower tropospheric shear in the early afternoon hours before the tornado’s occurrence. We discuss the importance of using both observational datasets and higher-resolution modeling in the simulation of lower tropospheric wind profiles, which affect the lower tropospheric storm relative helicity as one of the key ingredients in mesocyclonic tornadogenesis.

5 citations

Journal ArticleDOI
TL;DR: In this paper, a statistically significant geographic shift of U.S. tornado activity center (i.e., Tornado Alley) under warming conditions, and five major areas of tornado activity in the new Tornado Alley were identified previously.
Abstract: Even with ever-increasing societal interest in tornado activities engendering catastrophes of loss of life and property damage, the long-term change in the geographic location and environment of tornado activity centers over the last six decades (1954–2018), and its relationship with climate warming in the U.S., is still unknown or not robustly proved scientifically. Utilizing discriminant analysis, we show a statistically significant geographic shift of U.S. tornado activity center (i.e., Tornado Alley) under warming conditions, and we identify five major areas of tornado activity in the new Tornado Alley that were not identified previously. By contrasting warm versus cold years, we demonstrate that the shift of relative warm centers is coupled with the shifts in low pressure and tornado activity centers. The warm and moist air carried by low-level flow from the Gulf of Mexico combined with upward motion acts to fuel convection over the tornado activity centers. Employing composite analyses using high resolution reanalysis data, we further demonstrate that high tornado activities in the U.S. are associated with stronger cyclonic circulation and baroclinicity than low tornado activities, and the high tornado activities are coupled with stronger low-level wind shear, stronger upward motion, and higher convective available potential energy (CAPE) than low tornado activities. The composite differences between high-event and low-event years of tornado activity are identified for the first time in terms of wind shear, upward motion, CAPE, cyclonic circulation and baroclinicity, although some of these environmental variables favorable for tornado development have been discussed in previous studies.

5 citations

Journal ArticleDOI
TL;DR: In this article, the role of soil moisture and vegetation on 30-h precipitation forecasts during the break monsoon period using Weather Research and Forecast (WRF) model was investigated.
Abstract: Indian summer monsoon rainfall is characterized by large intra-seasonal fluctuations in the form of active and break spells in rainfall. This study investigates the role of soil moisture and vegetation on 30-h precipitation forecasts during the break monsoon period using Weather Research and Forecast (WRF) model. The working hypothesis is that reduced rainfall, clear skies, and wet soil condition during the break monsoon period enhance land-atmosphere coupling over central India. Sensitivity experiments are conducted with modified initial soil moisture and vegetation. The results suggest that an increase in antecedent soil moisture would lead to an increase in precipitation, in general. The precipitation over the core monsoon region has increased by enhancing forest cover in the model simulations. Parameters such as Lifting Condensation Level, Level of Free Convection, and Convective Available Potential Energy indicate favorable atmospheric conditions for convection over forests, when wet soil conditions prevail. On spatial scales, the precipitation is more sensitive to soil moisture conditions over northeastern parts of India. Strong horizontal gradient in soil moisture and orographic uplift along the upslopes of Himalaya enhanced rainfall over the east of Indian subcontinent.

5 citations

Journal ArticleDOI
TL;DR: In this paper , the authors performed a 32-year analysis using both radiosonde observations and ERA5 reanalysis, and found that the average synoptic configuration is dominated by an upper level trough over the central Mediterranean Sea and by a low surface pressure area over northwestern Italy, with southwesterly upper-level winds over the Tyrrhenian Sea and higher-than-average north-west winds entering the western Mediterranean through the gulf of Lion.

5 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the response of rainfall trends to land surface properties (roughness length and sensible heat flux) under weak wind shear conditions by numerical simulation and idealized experiments.

5 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
89% related
Stratosphere
15.7K papers, 586.6K citations
86% related
Monsoon
16K papers, 599.8K citations
85% related
Sea surface temperature
21.2K papers, 874.7K citations
84% related
Precipitation
32.8K papers, 990.4K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202365
202291
202151
202038
201932
201827