scispace - formally typeset
Search or ask a question
Topic

Convective available potential energy

About: Convective available potential energy is a research topic. Over the lifetime, 936 publications have been published within this topic receiving 43773 citations. The topic is also known as: CAPE.


Papers
More filters
Book
07 Aug 2013
TL;DR: The two-dimensional version of the GCE model is used to simulate two South China Sea Monsoon Experiment (SCSMEX) convective periods [18-26 May (prior to and during the monsoon onset) and 2-11 June 1998].
Abstract: The two-dimensional version of the Goddard Cumulus Ensemble (GCE) model is used to simulate two South China Sea Monsoon Experiment (SCSMEX) convective periods [18–26 May (prior to and during the monsoon onset) and 2–11 June (after the onset of the monsoon) 1998]. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum are used as the main forcing in governing the GCE model in a semiprognostic manner. The June SCSMEX case has stronger forcing in both temperature and water vapor, stronger low-level vertical shear of the horizontal wind, and larger convective available potential energy (CAPE). The temporal variation of the model-simulated rainfall, time- and domain-averaged heating, and moisture budgets compares well to those diagnostically determined from soundings. However, the model results have a higher temporal variability. The model underestimates the rainfall by 17% to 20% compared to that based on soundings. The GCE model-simulat...

70 citations

Journal ArticleDOI
TL;DR: In this article, the authors implemented a revised convective triggering condition in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, Version 2 (CAM2), model to reduce its excessive warm season daytime precipitation over land.
Abstract: [1] This study implements a revised convective triggering condition in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model, Version 2 (CAM2), model to reduce its excessive warm season daytime precipitation over land. The new triggering mechanism introduces a simple dynamic constraint on the initiation of convection that emulates the collective effects of lower level moistening and upward motion of the large-scale circulation. It requires a positive contribution from the large-scale advection of temperature and moisture to the existing positive convective available potential energy (CAPE) for model convection to start. In contrast, the original convection triggering function in CAM2 assumes that convection is triggered whenever there is positive CAPE, which results in too frequent warm season convection over land arising from strong diurnal variation of solar radiation. We examine the impact of the new trigger on CAM2 simulations by running the climate model in numerical weather prediction (NWP) mode so that more available observations and high-frequency NWP analysis data can be used to evaluate model performance. We show that the modified triggering mechanism has led to considerable improvements in the simulation of precipitation, temperature, moisture, clouds, radiations, surface temperature, and surface sensible and latent heat fluxes when compared to the data collected from the Atmospheric Radiation Measurement (ARM) Program at its Southern Great Plains (SGP) site. Similar improvements are also seen over other parts of the globe. In particular, the surface precipitation simulation has been significantly improved over both the continental United States and around the globe; the overestimation of high clouds in the equatorial tropics has been substantially reduced; and the temperature, moisture, and zonal wind are more realistically simulated. Results from this study also show that some systematic errors in the CAM2 climate simulations can be detected in the early stage of model integration. Examples are the extremely overestimated high clouds in the tropics in the vicinity of Intertropical Convergence Zone and the spurious precipitation maximum to the east of the Rockies. This has important implications in studies of these model errors since running the climate model in NWP mode allows us to perform a more in-depth analysis during a short time period where more observations are available and different model errors from various processes have not compensated for the systematic errors.

69 citations

Journal ArticleDOI
TL;DR: In this article, a new simplified parametrization of subgrid-scale convective processes has been developed and tested in the framework of the ECMWF Integrated Forecasting System for the purpose of variational data assimilation, singular vector calculations and adjoint sensitivity experiments.
Abstract: A new simplified parametrization of subgrid-scale convective processes has been developed and tested in the framework of the ECMWF Integrated Forecasting System for the purpose of variational data assimilation, singular vector calculations and adjoint sensitivity experiments. Its formulation is based on the full nonlinear convection scheme used in ECMWF forecasts, but a set of simplifications has been applied to substantially improve its linear behaviour. These include the specification of a single closure assumption based on convective available potential energy, the uncoupling of the equations for the convective mass flux and updraught characteristics and a unified formulation of the entrainment and detrainment rates. Simplified representations of downdraughts and momentum transport are also included in the new scheme. Despite these simplifications, the forecasting ability of the new convective parametrization is shown to remain satisfactory even in seasonal integrations. A detailed study of its Jacobians and the validity of the linear hypothesis is presented. The new scheme is also tested in combination with the new simplified parametrization of large-scale clouds and precipitation recently developed at ECMWF. In contrast with the simplified convective parametrization currently used in ECMWF's operational 4D-Var, its tangent-linear and adjoint versions account for perturbations of all convective quantities including convective mass flux, updraught characteristics and precipitation fluxes. Therefore the new scheme is expected to be beneficial when combined with radiative calculations that are directly affected by condensation and precipitation. Examples are presented of applications of the new moist physics in 1D-Var retrievals using microwave brightness temperature measurements and in adjoint sensitivity experiments. Copyright © 2005 Royal Meteorological Society.

68 citations

Journal ArticleDOI
TL;DR: In this article, the connections between intrusions of stratospheric air into the upper troposphere and deep convection in the tropical eastern Pacific are examined using a combination of data analysis, potential vorticity (PV) inversion, and numerical simulations.
Abstract: The connections between intrusions of stratospheric air into the upper troposphere and deep convection in the tropical eastern Pacific are examined using a combination of data analysis, potential vorticity (PV) inversion, and numerical simulations. Analysis of NCEP–NCAR reanalyses and satellite measurements of outgoing longwave radiation during intrusion events shows increased cloudiness, lower static stability, upward motion, and a buildup of convective available potential energy (CAPE) at the leading edge of the intruding tongue of high PV. Potential inversion inversion calculations show that the upper-level PV makes the dominant contribution to the changes in the quantities that characterize convection. This supports the hypothesis that upper-level PV anomalies initiate and support convection by destabilizing the lower troposphere and causing upward motion ahead on the PV tongue. The dominant role of the upper-level PV is confirmed by simulations using the fifth-generation Pennsylvania State U...

68 citations

Book ChapterDOI
01 Jan 1988
TL;DR: In this paper, a brief review of cloud thermodynamics, radiative processes, the role of entrainment, and descriptions of fogs, cumulus and stratocumulus clouds are provided.
Abstract: Clouds can form at the top of mixed layers, and at the bottom of stable boundary layers. The amount and distribution of short and long-wave radiative flux divergence in the boundary layer are altered by clouds, and these effects are emerging as important aspects of the climate-change problem. In addition, the radiative effects combine with latent heating to modulate BL dynamics, turbulence generation, and evolution. This chapter provides a brief review of cloud thermodynamics, radiative processes, the role of entrainment, and descriptions of fogs, cumulus and stratocumulus clouds.

67 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
89% related
Stratosphere
15.7K papers, 586.6K citations
86% related
Monsoon
16K papers, 599.8K citations
85% related
Sea surface temperature
21.2K papers, 874.7K citations
84% related
Precipitation
32.8K papers, 990.4K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202365
202291
202151
202038
201932
201827