scispace - formally typeset
Search or ask a question
Topic

Convective available potential energy

About: Convective available potential energy is a research topic. Over the lifetime, 936 publications have been published within this topic receiving 43773 citations. The topic is also known as: CAPE.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors analyzed the multiscale interactions in the life cycle of the simulated storm and found that the Madden-Julian oscillation had both positive and negative effects on the tropical cyclone intensity depending on the location of the storm relative to the wind burst center associated with the MJO.
Abstract: The Nonhydrostatic Icosahedral Atmospheric Model (NICAM), a global cloud-system-resolving model, successfully simulated the life cycle of Tropical Storm Isobel that formed over the Timor Sea in the austral summer of 2006. The multiscale interactions in the life cycle of the simulated storm were analyzed in this study. The large-scale aspects that affected Isobel’s life cycle are documented in this paper and the corresponding mesoscale processes are documented in a companion paper. The life cycle of Isobel was largely controlled by a Madden–Julian oscillation (MJO) event and the associated westerly wind burst (WWB). The MJO was found to have both positive and negative effects on the tropical cyclone intensity depending on the location of the storm relative to the WWB center associated with the MJO. The large-scale low-level convergence and high convective available potential energy (CAPE) downwind of the WWB center provided a favorable region to the cyclogenesis and intensification, whereas the st...

24 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the environmental parameters favoring significant tornadoes in Bangladesh through a simulation of ten high-impact events and identified the most significant tornadic events and analyzed the environmental conditions associated with these events given the scarcity of observational data to assess the near-storm environment in this region.

23 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the cloud response to fire aerosols using aerosol data from the Multi-angle Imaging SpectroRadiometer (MISR) and cloud fraction from the morning and afternoon overpasses of the MODIS instrument.
Abstract: Anthopogenic savanna fires in sub-Saharan Africa emit smoke that affects cloudiness in the region. We measured the cloud response to fire aerosols using aerosol data from the Multi-angle Imaging SpectroRadiometer (MISR) and cloud fraction data from the morning and afternoon overpasses of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. Considering the same cloud scene from the morning and afternoon satellite observations allowed us to observe the temporal relationship between clouds and aerosols. Level 2 data from 35 individual scenes during the fire season (December) between 2006 and 2010 were analyzed to quantify changes in MODIS cloud fraction from morning (10:30 A.M. local time) to afternoon (1:30 P.M. local time) in the presence of different morning aerosol burdens (from MISR). We controlled for the local meteorology by analyzing scenes from November, when fire activity and aerosol optical depth were low but cloud fraction and meteorological variables (boundary layer height, pressure, total column water vapor, temperature, and convective available potential energy) were similar to those of the fire season. High-fire-driven aerosol optical depth (AOD) was associated with reduced cloud fraction in both the raw and meteorologically normalized data. Fire aerosols reduced the relative cloud fraction in all sky conditions, but the effects were progressively larger in high-AOD conditions. These results may provide observational evidence of the semidirect cloud decimation effect in tropical regions and suggest a positive feedback loop between anthropogenic burning and cloudiness—where more aerosols lead to decreased clouds, increased surface exposure and drying, more fire, and thus more aerosols—which is consistent with previous studies linking smoke aerosols to reduced cloudiness and vice versa.

23 citations

Journal ArticleDOI
TL;DR: In this paper, 10 years of Vaisala, Inc., RS92 radiosonde observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site were matched to overpasses of the NASA Aqua satellite that were made from January 2005 through December 2014.
Abstract: Convective available potential energy (CAPE) is one of the physical quantities used by operational meteorologists when issuing severe-weather convective watches and warnings. Recent advances in satellite technology could provide timely observations of atmospheric temperature and water vapor profiles over the continental United States, but only limited validation exists in the literature to characterize uncertainties in CAPE derived from the new satellite sensors. In this study, 10 years of Vaisala, Inc., RS92 radiosonde observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site were matched to overpasses of the NASA Aqua satellite that were made from January 2005 through December 2014. Vertical profiles of temperature and water vapor from the NASA Atmospheric Infrared Sounder (AIRS) were extracted in a region surrounding the DOE ARM SGP central facility near Lamont, Oklahoma. Surface-based CAPE was computed using software consiste...

23 citations

Journal ArticleDOI
TL;DR: In this article, a remotely piloted vehicle was developed to make in situ measurements of pressure, temperature, and humidity in the convective boundary layer, which showed that convective plumes originate in the superadiabatic surface layer.
Abstract: Measurements were made to determine the level of origin of air parcels participating in natural convection. Lagrangian measurements of conservative variables are ideal for this purpose. A simple remotely piloted vehicle was developed to make in situ measurements of pressure, temperature, and humidity in the convective boundary layer. These quasi-Lagrangian measurements clearly show that convective plumes originate in the superadiabatic surface layer. The observed boundary layer plumes have virtual temperature excesses of about 0.4 K in a tropical region (Orlando, Florida) and of about 1.5 K in a desert region (Albuquerque, New Mexico). The water vapor contribution to parcel buoyancy was appreciable in Orlando but in Albuquerque was insignificant. These observations indicate that convective available potential energy should he determined by adiabatically lifting air parcels from the surface layer, at screen level.

23 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
89% related
Stratosphere
15.7K papers, 586.6K citations
86% related
Monsoon
16K papers, 599.8K citations
85% related
Sea surface temperature
21.2K papers, 874.7K citations
84% related
Precipitation
32.8K papers, 990.4K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202365
202291
202151
202038
201932
201827