scispace - formally typeset
Search or ask a question
Topic

Convergence of random variables

About: Convergence of random variables is a research topic. Over the lifetime, 6123 publications have been published within this topic receiving 205200 citations. The topic is also known as: сonvergence in distribution & сonvergence in probability.


Papers
More filters
Book
01 Jan 1965
TL;DR: This chapter discusses the concept of a Random Variable, the meaning of Probability, and the axioms of probability in terms of Markov Chains and Queueing Theory.
Abstract: Part 1 Probability and Random Variables 1 The Meaning of Probability 2 The Axioms of Probability 3 Repeated Trials 4 The Concept of a Random Variable 5 Functions of One Random Variable 6 Two Random Variables 7 Sequences of Random Variables 8 Statistics Part 2 Stochastic Processes 9 General Concepts 10 Random Walk and Other Applications 11 Spectral Representation 12 Spectral Estimation 13 Mean Square Estimation 14 Entropy 15 Markov Chains 16 Markov Processes and Queueing Theory

13,886 citations

Book ChapterDOI
TL;DR: In this article, upper bounds for the probability that the sum S of n independent random variables exceeds its mean ES by a positive number nt are derived for certain sums of dependent random variables such as U statistics.
Abstract: Upper bounds are derived for the probability that the sum S of n independent random variables exceeds its mean ES by a positive number nt. It is assumed that the range of each summand of S is bounded or bounded above. The bounds for Pr {S – ES ≥ nt} depend only on the endpoints of the ranges of the summands and the mean, or the mean and the variance of S. These results are then used to obtain analogous inequalities for certain sums of dependent random variables such as U statistics and the sum of a random sample without replacement from a finite population.

8,655 citations

Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations

Book
01 Jan 1982
TL;DR: In this article, the authors present a survey of the history and varieties of probability for the laws of chance and their application in the context of Markov chains convergence of random variables.
Abstract: Events and their probabilities random variables and their distributions discrete random variables continuous random variables generating functions and their applications Markov chains convergence of random variables random processes stationary processes renewals queues Martingales diffusion processes. Appendices: Foundations and notations history and varieties of probability John Arburthnot's preface to "Of the Laws of Chance" (1692).

2,819 citations


Network Information
Related Topics (5)
Random variable
29.1K papers, 674.6K citations
87% related
Stochastic partial differential equation
21.1K papers, 707.2K citations
84% related
Markov chain
51.9K papers, 1.3M citations
84% related
Rate of convergence
31.2K papers, 795.3K citations
82% related
Bounded function
77.2K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202324
202244
2021133
2020136
2019132
2018119