Topic

# Convex optimization

About: Convex optimization is a(n) research topic. Over the lifetime, 24906 publication(s) have been published within this topic receiving 908795 citation(s). The topic is also known as: convex optimisation.

##### Papers published on a yearly basis

##### Papers

More filters

•

[...]

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.

Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

78,539 citations

•

[...]

TL;DR: In this article, the focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them, and a comprehensive introduction to the subject is given. But the focus of this book is not on the optimization problem itself, but on the problem of finding the appropriate technique to solve it.

Abstract: Convex optimization problems arise frequently in many different fields. A comprehensive introduction to the subject, this book shows in detail how such problems can be solved numerically with great efficiency. The focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. The text contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance, and economics.

33,299 citations

•

[...]

TL;DR: In this article, the adaptive estimates of lower-order moments are used for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimate of lowerorder moments.

Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

23,369 citations

•

[...]

23 May 2011

TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.

Abstract: Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. In this review, we argue that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas–Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for l1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, we discuss applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. We also discuss general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.

14,958 citations

•

[...]

TL;DR: In this article, the authors consider non-convex variational problems with a priori estimate in convex programming and show that they can be solved by the minimax theorem.

Abstract: Preface to the classics edition Preface Part I. Fundamentals of Convex Analysis. I. Convex functions 2. Minimization of convex functions and variational inequalities 3. Duality in convex optimization Part II. Duality and Convex Variational Problems. 4. Applications of duality to the calculus of variations (I) 5. Applications of duality to the calculus of variations (II) 6. Duality by the minimax theorem 7. Other applications of duality Part III. Relaxation and Non-Convex Variational Problems. 8. Existence of solutions for variational problems 9. Relaxation of non-convex variational problems (I) 10. Relaxation of non-convex variational problems (II) Appendix I. An a priori estimate in non-convex programming Appendix II. Non-convex optimization problems depending on a parameter Comments Bibliography Index.

4,272 citations